1 : /* Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
2 : Free Software Foundation, Inc.
3 :
4 : This file is part of GCC.
5 :
6 : GCC is free software; you can redistribute it and/or modify
7 : it under the terms of the GNU General Public License as published by
8 : the Free Software Foundation; either version 3, or (at your option)
9 : any later version.
10 :
11 : GCC is distributed in the hope that it will be useful,
12 : but WITHOUT ANY WARRANTY; without even the implied warranty of
13 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 : GNU General Public License for more details.
15 :
16 : Under Section 7 of GPL version 3, you are granted additional
17 : permissions described in the GCC Runtime Library Exception, version
18 : 3.1, as published by the Free Software Foundation.
19 :
20 : You should have received a copy of the GNU General Public License and
21 : a copy of the GCC Runtime Library Exception along with this program;
22 : see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 : <http://www.gnu.org/licenses/>. */
24 :
25 : /* Implemented from the specification included in the Intel C++ Compiler
26 : User Guide and Reference, version 9.0. */
27 :
28 : #ifndef _XMMINTRIN_H_INCLUDED
29 : #define _XMMINTRIN_H_INCLUDED
30 :
31 : #ifndef __SSE__
32 : # error "SSE instruction set not enabled"
33 : #else
34 :
35 : /* We need type definitions from the MMX header file. */
36 : #include <mmintrin.h>
37 :
38 : /* Get _mm_malloc () and _mm_free (). */
39 : #include <mm_malloc.h>
40 :
41 : /* The Intel API is flexible enough that we must allow aliasing with other
42 : vector types, and their scalar components. */
43 : typedef float __m128 __attribute__ ((__vector_size__ (16), __may_alias__));
44 :
45 : /* Internal data types for implementing the intrinsics. */
46 : typedef float __v4sf __attribute__ ((__vector_size__ (16)));
47 :
48 : /* Create a selector for use with the SHUFPS instruction. */
49 : #define _MM_SHUFFLE(fp3,fp2,fp1,fp0) \
50 : (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | (fp0))
51 :
52 : /* Constants for use with _mm_prefetch. */
53 : enum _mm_hint
54 : {
55 : _MM_HINT_T0 = 3,
56 : _MM_HINT_T1 = 2,
57 : _MM_HINT_T2 = 1,
58 : _MM_HINT_NTA = 0
59 : };
60 :
61 : /* Bits in the MXCSR. */
62 : #define _MM_EXCEPT_MASK 0x003f
63 : #define _MM_EXCEPT_INVALID 0x0001
64 : #define _MM_EXCEPT_DENORM 0x0002
65 : #define _MM_EXCEPT_DIV_ZERO 0x0004
66 : #define _MM_EXCEPT_OVERFLOW 0x0008
67 : #define _MM_EXCEPT_UNDERFLOW 0x0010
68 : #define _MM_EXCEPT_INEXACT 0x0020
69 :
70 : #define _MM_MASK_MASK 0x1f80
71 : #define _MM_MASK_INVALID 0x0080
72 : #define _MM_MASK_DENORM 0x0100
73 : #define _MM_MASK_DIV_ZERO 0x0200
74 : #define _MM_MASK_OVERFLOW 0x0400
75 : #define _MM_MASK_UNDERFLOW 0x0800
76 : #define _MM_MASK_INEXACT 0x1000
77 :
78 : #define _MM_ROUND_MASK 0x6000
79 : #define _MM_ROUND_NEAREST 0x0000
80 : #define _MM_ROUND_DOWN 0x2000
81 : #define _MM_ROUND_UP 0x4000
82 : #define _MM_ROUND_TOWARD_ZERO 0x6000
83 :
84 : #define _MM_FLUSH_ZERO_MASK 0x8000
85 : #define _MM_FLUSH_ZERO_ON 0x8000
86 : #define _MM_FLUSH_ZERO_OFF 0x0000
87 :
88 : /* Create a vector of zeros. */
89 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
90 : _mm_setzero_ps (void)
91 : {
92 : return __extension__ (__m128){ 0.0f, 0.0f, 0.0f, 0.0f };
93 : }
94 :
95 : /* Perform the respective operation on the lower SPFP (single-precision
96 : floating-point) values of A and B; the upper three SPFP values are
97 : passed through from A. */
98 :
99 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
100 : _mm_add_ss (__m128 __A, __m128 __B)
101 : {
102 : return (__m128) __builtin_ia32_addss ((__v4sf)__A, (__v4sf)__B);
103 : }
104 :
105 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
106 : _mm_sub_ss (__m128 __A, __m128 __B)
107 : {
108 : return (__m128) __builtin_ia32_subss ((__v4sf)__A, (__v4sf)__B);
109 : }
110 :
111 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
112 : _mm_mul_ss (__m128 __A, __m128 __B)
113 : {
114 : return (__m128) __builtin_ia32_mulss ((__v4sf)__A, (__v4sf)__B);
115 : }
116 :
117 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
118 : _mm_div_ss (__m128 __A, __m128 __B)
119 : {
120 : return (__m128) __builtin_ia32_divss ((__v4sf)__A, (__v4sf)__B);
121 : }
122 :
123 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
124 : _mm_sqrt_ss (__m128 __A)
125 : {
126 : return (__m128) __builtin_ia32_sqrtss ((__v4sf)__A);
127 : }
128 :
129 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
130 : _mm_rcp_ss (__m128 __A)
131 : {
132 : return (__m128) __builtin_ia32_rcpss ((__v4sf)__A);
133 : }
134 :
135 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
136 : _mm_rsqrt_ss (__m128 __A)
137 : {
138 : return (__m128) __builtin_ia32_rsqrtss ((__v4sf)__A);
139 : }
140 :
141 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
142 : _mm_min_ss (__m128 __A, __m128 __B)
143 : {
144 : return (__m128) __builtin_ia32_minss ((__v4sf)__A, (__v4sf)__B);
145 : }
146 :
147 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
148 : _mm_max_ss (__m128 __A, __m128 __B)
149 : {
150 : return (__m128) __builtin_ia32_maxss ((__v4sf)__A, (__v4sf)__B);
151 : }
152 :
153 : /* Perform the respective operation on the four SPFP values in A and B. */
154 :
155 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
156 : _mm_add_ps (__m128 __A, __m128 __B)
157 : {
158 : return (__m128) __builtin_ia32_addps ((__v4sf)__A, (__v4sf)__B);
159 : }
160 :
161 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
162 : _mm_sub_ps (__m128 __A, __m128 __B)
163 : {
164 : return (__m128) __builtin_ia32_subps ((__v4sf)__A, (__v4sf)__B);
165 : }
166 :
167 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
168 : _mm_mul_ps (__m128 __A, __m128 __B)
169 : {
170 : return (__m128) __builtin_ia32_mulps ((__v4sf)__A, (__v4sf)__B);
171 : }
172 :
173 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
174 : _mm_div_ps (__m128 __A, __m128 __B)
175 : {
176 : return (__m128) __builtin_ia32_divps ((__v4sf)__A, (__v4sf)__B);
177 : }
178 :
179 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
180 : _mm_sqrt_ps (__m128 __A)
181 : {
182 : return (__m128) __builtin_ia32_sqrtps ((__v4sf)__A);
183 : }
184 :
185 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
186 : _mm_rcp_ps (__m128 __A)
187 : {
188 : return (__m128) __builtin_ia32_rcpps ((__v4sf)__A);
189 : }
190 :
191 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
192 : _mm_rsqrt_ps (__m128 __A)
193 : {
194 : return (__m128) __builtin_ia32_rsqrtps ((__v4sf)__A);
195 : }
196 :
197 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
198 : _mm_min_ps (__m128 __A, __m128 __B)
199 : {
200 : return (__m128) __builtin_ia32_minps ((__v4sf)__A, (__v4sf)__B);
201 : }
202 :
203 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
204 : _mm_max_ps (__m128 __A, __m128 __B)
205 : {
206 : return (__m128) __builtin_ia32_maxps ((__v4sf)__A, (__v4sf)__B);
207 : }
208 :
209 : /* Perform logical bit-wise operations on 128-bit values. */
210 :
211 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
212 : _mm_and_ps (__m128 __A, __m128 __B)
213 : {
214 : return __builtin_ia32_andps (__A, __B);
215 : }
216 :
217 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
218 : _mm_andnot_ps (__m128 __A, __m128 __B)
219 : {
220 : return __builtin_ia32_andnps (__A, __B);
221 : }
222 :
223 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
224 : _mm_or_ps (__m128 __A, __m128 __B)
225 : {
226 : return __builtin_ia32_orps (__A, __B);
227 : }
228 :
229 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
230 : _mm_xor_ps (__m128 __A, __m128 __B)
231 : {
232 : return __builtin_ia32_xorps (__A, __B);
233 : }
234 :
235 : /* Perform a comparison on the lower SPFP values of A and B. If the
236 : comparison is true, place a mask of all ones in the result, otherwise a
237 : mask of zeros. The upper three SPFP values are passed through from A. */
238 :
239 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
240 : _mm_cmpeq_ss (__m128 __A, __m128 __B)
241 : {
242 : return (__m128) __builtin_ia32_cmpeqss ((__v4sf)__A, (__v4sf)__B);
243 : }
244 :
245 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
246 : _mm_cmplt_ss (__m128 __A, __m128 __B)
247 : {
248 : return (__m128) __builtin_ia32_cmpltss ((__v4sf)__A, (__v4sf)__B);
249 : }
250 :
251 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
252 : _mm_cmple_ss (__m128 __A, __m128 __B)
253 : {
254 : return (__m128) __builtin_ia32_cmpless ((__v4sf)__A, (__v4sf)__B);
255 : }
256 :
257 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
258 : _mm_cmpgt_ss (__m128 __A, __m128 __B)
259 : {
260 : return (__m128) __builtin_ia32_movss ((__v4sf) __A,
261 : (__v4sf)
262 : __builtin_ia32_cmpltss ((__v4sf) __B,
263 : (__v4sf)
264 : __A));
265 : }
266 :
267 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
268 : _mm_cmpge_ss (__m128 __A, __m128 __B)
269 : {
270 : return (__m128) __builtin_ia32_movss ((__v4sf) __A,
271 : (__v4sf)
272 : __builtin_ia32_cmpless ((__v4sf) __B,
273 : (__v4sf)
274 : __A));
275 : }
276 :
277 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
278 : _mm_cmpneq_ss (__m128 __A, __m128 __B)
279 : {
280 : return (__m128) __builtin_ia32_cmpneqss ((__v4sf)__A, (__v4sf)__B);
281 : }
282 :
283 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
284 : _mm_cmpnlt_ss (__m128 __A, __m128 __B)
285 : {
286 : return (__m128) __builtin_ia32_cmpnltss ((__v4sf)__A, (__v4sf)__B);
287 : }
288 :
289 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
290 : _mm_cmpnle_ss (__m128 __A, __m128 __B)
291 : {
292 : return (__m128) __builtin_ia32_cmpnless ((__v4sf)__A, (__v4sf)__B);
293 : }
294 :
295 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
296 : _mm_cmpngt_ss (__m128 __A, __m128 __B)
297 : {
298 : return (__m128) __builtin_ia32_movss ((__v4sf) __A,
299 : (__v4sf)
300 : __builtin_ia32_cmpnltss ((__v4sf) __B,
301 : (__v4sf)
302 : __A));
303 : }
304 :
305 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
306 : _mm_cmpnge_ss (__m128 __A, __m128 __B)
307 : {
308 : return (__m128) __builtin_ia32_movss ((__v4sf) __A,
309 : (__v4sf)
310 : __builtin_ia32_cmpnless ((__v4sf) __B,
311 : (__v4sf)
312 : __A));
313 : }
314 :
315 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
316 : _mm_cmpord_ss (__m128 __A, __m128 __B)
317 : {
318 : return (__m128) __builtin_ia32_cmpordss ((__v4sf)__A, (__v4sf)__B);
319 : }
320 :
321 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
322 : _mm_cmpunord_ss (__m128 __A, __m128 __B)
323 : {
324 : return (__m128) __builtin_ia32_cmpunordss ((__v4sf)__A, (__v4sf)__B);
325 : }
326 :
327 : /* Perform a comparison on the four SPFP values of A and B. For each
328 : element, if the comparison is true, place a mask of all ones in the
329 : result, otherwise a mask of zeros. */
330 :
331 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
332 : _mm_cmpeq_ps (__m128 __A, __m128 __B)
333 : {
334 : return (__m128) __builtin_ia32_cmpeqps ((__v4sf)__A, (__v4sf)__B);
335 : }
336 :
337 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
338 : _mm_cmplt_ps (__m128 __A, __m128 __B)
339 : {
340 : return (__m128) __builtin_ia32_cmpltps ((__v4sf)__A, (__v4sf)__B);
341 : }
342 :
343 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
344 : _mm_cmple_ps (__m128 __A, __m128 __B)
345 : {
346 : return (__m128) __builtin_ia32_cmpleps ((__v4sf)__A, (__v4sf)__B);
347 : }
348 :
349 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
350 : _mm_cmpgt_ps (__m128 __A, __m128 __B)
351 : {
352 : return (__m128) __builtin_ia32_cmpgtps ((__v4sf)__A, (__v4sf)__B);
353 : }
354 :
355 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
356 : _mm_cmpge_ps (__m128 __A, __m128 __B)
357 : {
358 : return (__m128) __builtin_ia32_cmpgeps ((__v4sf)__A, (__v4sf)__B);
359 : }
360 :
361 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
362 : _mm_cmpneq_ps (__m128 __A, __m128 __B)
363 : {
364 : return (__m128) __builtin_ia32_cmpneqps ((__v4sf)__A, (__v4sf)__B);
365 : }
366 :
367 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
368 : _mm_cmpnlt_ps (__m128 __A, __m128 __B)
369 : {
370 : return (__m128) __builtin_ia32_cmpnltps ((__v4sf)__A, (__v4sf)__B);
371 : }
372 :
373 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
374 : _mm_cmpnle_ps (__m128 __A, __m128 __B)
375 : {
376 : return (__m128) __builtin_ia32_cmpnleps ((__v4sf)__A, (__v4sf)__B);
377 : }
378 :
379 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
380 : _mm_cmpngt_ps (__m128 __A, __m128 __B)
381 : {
382 : return (__m128) __builtin_ia32_cmpngtps ((__v4sf)__A, (__v4sf)__B);
383 : }
384 :
385 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
386 : _mm_cmpnge_ps (__m128 __A, __m128 __B)
387 : {
388 : return (__m128) __builtin_ia32_cmpngeps ((__v4sf)__A, (__v4sf)__B);
389 : }
390 :
391 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
392 : _mm_cmpord_ps (__m128 __A, __m128 __B)
393 : {
394 : return (__m128) __builtin_ia32_cmpordps ((__v4sf)__A, (__v4sf)__B);
395 : }
396 :
397 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
398 : _mm_cmpunord_ps (__m128 __A, __m128 __B)
399 : {
400 : return (__m128) __builtin_ia32_cmpunordps ((__v4sf)__A, (__v4sf)__B);
401 : }
402 :
403 : /* Compare the lower SPFP values of A and B and return 1 if true
404 : and 0 if false. */
405 :
406 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
407 : _mm_comieq_ss (__m128 __A, __m128 __B)
408 : {
409 : return __builtin_ia32_comieq ((__v4sf)__A, (__v4sf)__B);
410 : }
411 :
412 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
413 : _mm_comilt_ss (__m128 __A, __m128 __B)
414 : {
415 : return __builtin_ia32_comilt ((__v4sf)__A, (__v4sf)__B);
416 : }
417 :
418 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
419 : _mm_comile_ss (__m128 __A, __m128 __B)
420 : {
421 : return __builtin_ia32_comile ((__v4sf)__A, (__v4sf)__B);
422 : }
423 :
424 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
425 : _mm_comigt_ss (__m128 __A, __m128 __B)
426 : {
427 : return __builtin_ia32_comigt ((__v4sf)__A, (__v4sf)__B);
428 : }
429 :
430 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
431 : _mm_comige_ss (__m128 __A, __m128 __B)
432 : {
433 : return __builtin_ia32_comige ((__v4sf)__A, (__v4sf)__B);
434 : }
435 :
436 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
437 : _mm_comineq_ss (__m128 __A, __m128 __B)
438 : {
439 : return __builtin_ia32_comineq ((__v4sf)__A, (__v4sf)__B);
440 : }
441 :
442 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
443 : _mm_ucomieq_ss (__m128 __A, __m128 __B)
444 : {
445 : return __builtin_ia32_ucomieq ((__v4sf)__A, (__v4sf)__B);
446 : }
447 :
448 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
449 : _mm_ucomilt_ss (__m128 __A, __m128 __B)
450 : {
451 : return __builtin_ia32_ucomilt ((__v4sf)__A, (__v4sf)__B);
452 : }
453 :
454 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
455 : _mm_ucomile_ss (__m128 __A, __m128 __B)
456 : {
457 : return __builtin_ia32_ucomile ((__v4sf)__A, (__v4sf)__B);
458 : }
459 :
460 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
461 : _mm_ucomigt_ss (__m128 __A, __m128 __B)
462 : {
463 : return __builtin_ia32_ucomigt ((__v4sf)__A, (__v4sf)__B);
464 : }
465 :
466 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
467 : _mm_ucomige_ss (__m128 __A, __m128 __B)
468 : {
469 : return __builtin_ia32_ucomige ((__v4sf)__A, (__v4sf)__B);
470 : }
471 :
472 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
473 : _mm_ucomineq_ss (__m128 __A, __m128 __B)
474 : {
475 : return __builtin_ia32_ucomineq ((__v4sf)__A, (__v4sf)__B);
476 : }
477 :
478 : /* Convert the lower SPFP value to a 32-bit integer according to the current
479 : rounding mode. */
480 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
481 : _mm_cvtss_si32 (__m128 __A)
482 : {
483 : return __builtin_ia32_cvtss2si ((__v4sf) __A);
484 : }
485 :
486 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
487 : _mm_cvt_ss2si (__m128 __A)
488 : {
489 : return _mm_cvtss_si32 (__A);
490 : }
491 :
492 : #ifdef __x86_64__
493 : /* Convert the lower SPFP value to a 32-bit integer according to the
494 : current rounding mode. */
495 :
496 : /* Intel intrinsic. */
497 : extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
498 : _mm_cvtss_si64 (__m128 __A)
499 : {
500 : return __builtin_ia32_cvtss2si64 ((__v4sf) __A);
501 : }
502 :
503 : /* Microsoft intrinsic. */
504 : extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
505 : _mm_cvtss_si64x (__m128 __A)
506 : {
507 : return __builtin_ia32_cvtss2si64 ((__v4sf) __A);
508 : }
509 : #endif
510 :
511 : /* Convert the two lower SPFP values to 32-bit integers according to the
512 : current rounding mode. Return the integers in packed form. */
513 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
514 : _mm_cvtps_pi32 (__m128 __A)
515 : {
516 : return (__m64) __builtin_ia32_cvtps2pi ((__v4sf) __A);
517 : }
518 :
519 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
520 : _mm_cvt_ps2pi (__m128 __A)
521 : {
522 : return _mm_cvtps_pi32 (__A);
523 : }
524 :
525 : /* Truncate the lower SPFP value to a 32-bit integer. */
526 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
527 : _mm_cvttss_si32 (__m128 __A)
528 : {
529 : return __builtin_ia32_cvttss2si ((__v4sf) __A);
530 : }
531 :
532 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
533 : _mm_cvtt_ss2si (__m128 __A)
534 : {
535 : return _mm_cvttss_si32 (__A);
536 : }
537 :
538 : #ifdef __x86_64__
539 : /* Truncate the lower SPFP value to a 32-bit integer. */
540 :
541 : /* Intel intrinsic. */
542 : extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
543 : _mm_cvttss_si64 (__m128 __A)
544 : {
545 : return __builtin_ia32_cvttss2si64 ((__v4sf) __A);
546 : }
547 :
548 : /* Microsoft intrinsic. */
549 : extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
550 : _mm_cvttss_si64x (__m128 __A)
551 : {
552 : return __builtin_ia32_cvttss2si64 ((__v4sf) __A);
553 : }
554 : #endif
555 :
556 : /* Truncate the two lower SPFP values to 32-bit integers. Return the
557 : integers in packed form. */
558 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
559 : _mm_cvttps_pi32 (__m128 __A)
560 : {
561 : return (__m64) __builtin_ia32_cvttps2pi ((__v4sf) __A);
562 : }
563 :
564 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
565 : _mm_cvtt_ps2pi (__m128 __A)
566 : {
567 : return _mm_cvttps_pi32 (__A);
568 : }
569 :
570 : /* Convert B to a SPFP value and insert it as element zero in A. */
571 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
572 : _mm_cvtsi32_ss (__m128 __A, int __B)
573 : {
574 : return (__m128) __builtin_ia32_cvtsi2ss ((__v4sf) __A, __B);
575 : }
576 :
577 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
578 : _mm_cvt_si2ss (__m128 __A, int __B)
579 : {
580 : return _mm_cvtsi32_ss (__A, __B);
581 : }
582 :
583 : #ifdef __x86_64__
584 : /* Convert B to a SPFP value and insert it as element zero in A. */
585 :
586 : /* Intel intrinsic. */
587 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
588 : _mm_cvtsi64_ss (__m128 __A, long long __B)
589 : {
590 : return (__m128) __builtin_ia32_cvtsi642ss ((__v4sf) __A, __B);
591 : }
592 :
593 : /* Microsoft intrinsic. */
594 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
595 : _mm_cvtsi64x_ss (__m128 __A, long long __B)
596 : {
597 : return (__m128) __builtin_ia32_cvtsi642ss ((__v4sf) __A, __B);
598 : }
599 : #endif
600 :
601 : /* Convert the two 32-bit values in B to SPFP form and insert them
602 : as the two lower elements in A. */
603 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
604 : _mm_cvtpi32_ps (__m128 __A, __m64 __B)
605 : {
606 : return (__m128) __builtin_ia32_cvtpi2ps ((__v4sf) __A, (__v2si)__B);
607 : }
608 :
609 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
610 : _mm_cvt_pi2ps (__m128 __A, __m64 __B)
611 : {
612 : return _mm_cvtpi32_ps (__A, __B);
613 : }
614 :
615 : /* Convert the four signed 16-bit values in A to SPFP form. */
616 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
617 : _mm_cvtpi16_ps (__m64 __A)
618 : {
619 : __v4hi __sign;
620 : __v2si __hisi, __losi;
621 : __v4sf __zero, __ra, __rb;
622 :
623 : /* This comparison against zero gives us a mask that can be used to
624 : fill in the missing sign bits in the unpack operations below, so
625 : that we get signed values after unpacking. */
626 : __sign = __builtin_ia32_pcmpgtw ((__v4hi)0LL, (__v4hi)__A);
627 :
628 : /* Convert the four words to doublewords. */
629 : __losi = (__v2si) __builtin_ia32_punpcklwd ((__v4hi)__A, __sign);
630 : __hisi = (__v2si) __builtin_ia32_punpckhwd ((__v4hi)__A, __sign);
631 :
632 : /* Convert the doublewords to floating point two at a time. */
633 : __zero = (__v4sf) _mm_setzero_ps ();
634 : __ra = __builtin_ia32_cvtpi2ps (__zero, __losi);
635 : __rb = __builtin_ia32_cvtpi2ps (__ra, __hisi);
636 :
637 : return (__m128) __builtin_ia32_movlhps (__ra, __rb);
638 : }
639 :
640 : /* Convert the four unsigned 16-bit values in A to SPFP form. */
641 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
642 : _mm_cvtpu16_ps (__m64 __A)
643 : {
644 : __v2si __hisi, __losi;
645 : __v4sf __zero, __ra, __rb;
646 :
647 : /* Convert the four words to doublewords. */
648 : __losi = (__v2si) __builtin_ia32_punpcklwd ((__v4hi)__A, (__v4hi)0LL);
649 : __hisi = (__v2si) __builtin_ia32_punpckhwd ((__v4hi)__A, (__v4hi)0LL);
650 :
651 : /* Convert the doublewords to floating point two at a time. */
652 : __zero = (__v4sf) _mm_setzero_ps ();
653 : __ra = __builtin_ia32_cvtpi2ps (__zero, __losi);
654 : __rb = __builtin_ia32_cvtpi2ps (__ra, __hisi);
655 :
656 : return (__m128) __builtin_ia32_movlhps (__ra, __rb);
657 : }
658 :
659 : /* Convert the low four signed 8-bit values in A to SPFP form. */
660 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
661 : _mm_cvtpi8_ps (__m64 __A)
662 : {
663 : __v8qi __sign;
664 :
665 : /* This comparison against zero gives us a mask that can be used to
666 : fill in the missing sign bits in the unpack operations below, so
667 : that we get signed values after unpacking. */
668 : __sign = __builtin_ia32_pcmpgtb ((__v8qi)0LL, (__v8qi)__A);
669 :
670 : /* Convert the four low bytes to words. */
671 : __A = (__m64) __builtin_ia32_punpcklbw ((__v8qi)__A, __sign);
672 :
673 : return _mm_cvtpi16_ps(__A);
674 : }
675 :
676 : /* Convert the low four unsigned 8-bit values in A to SPFP form. */
677 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
678 : _mm_cvtpu8_ps(__m64 __A)
679 : {
680 : __A = (__m64) __builtin_ia32_punpcklbw ((__v8qi)__A, (__v8qi)0LL);
681 : return _mm_cvtpu16_ps(__A);
682 : }
683 :
684 : /* Convert the four signed 32-bit values in A and B to SPFP form. */
685 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
686 : _mm_cvtpi32x2_ps(__m64 __A, __m64 __B)
687 : {
688 : __v4sf __zero = (__v4sf) _mm_setzero_ps ();
689 : __v4sf __sfa = __builtin_ia32_cvtpi2ps (__zero, (__v2si)__A);
690 : __v4sf __sfb = __builtin_ia32_cvtpi2ps (__sfa, (__v2si)__B);
691 : return (__m128) __builtin_ia32_movlhps (__sfa, __sfb);
692 : }
693 :
694 : /* Convert the four SPFP values in A to four signed 16-bit integers. */
695 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
696 : _mm_cvtps_pi16(__m128 __A)
697 : {
698 : __v4sf __hisf = (__v4sf)__A;
699 : __v4sf __losf = __builtin_ia32_movhlps (__hisf, __hisf);
700 : __v2si __hisi = __builtin_ia32_cvtps2pi (__hisf);
701 : __v2si __losi = __builtin_ia32_cvtps2pi (__losf);
702 : return (__m64) __builtin_ia32_packssdw (__hisi, __losi);
703 : }
704 :
705 : /* Convert the four SPFP values in A to four signed 8-bit integers. */
706 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
707 : _mm_cvtps_pi8(__m128 __A)
708 : {
709 : __v4hi __tmp = (__v4hi) _mm_cvtps_pi16 (__A);
710 : return (__m64) __builtin_ia32_packsswb (__tmp, (__v4hi)0LL);
711 : }
712 :
713 : /* Selects four specific SPFP values from A and B based on MASK. */
714 : #ifdef __OPTIMIZE__
715 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
716 : _mm_shuffle_ps (__m128 __A, __m128 __B, int const __mask)
717 : {
718 : return (__m128) __builtin_ia32_shufps ((__v4sf)__A, (__v4sf)__B, __mask);
719 : }
720 : #else
721 : #define _mm_shuffle_ps(A, B, MASK) \
722 : ((__m128) __builtin_ia32_shufps ((__v4sf)(__m128)(A), \
723 : (__v4sf)(__m128)(B), (int)(MASK)))
724 : #endif
725 :
726 : /* Selects and interleaves the upper two SPFP values from A and B. */
727 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
728 : _mm_unpackhi_ps (__m128 __A, __m128 __B)
729 : {
730 : return (__m128) __builtin_ia32_unpckhps ((__v4sf)__A, (__v4sf)__B);
731 : }
732 :
733 : /* Selects and interleaves the lower two SPFP values from A and B. */
734 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
735 : _mm_unpacklo_ps (__m128 __A, __m128 __B)
736 : {
737 : return (__m128) __builtin_ia32_unpcklps ((__v4sf)__A, (__v4sf)__B);
738 : }
739 :
740 : /* Sets the upper two SPFP values with 64-bits of data loaded from P;
741 : the lower two values are passed through from A. */
742 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
743 : _mm_loadh_pi (__m128 __A, __m64 const *__P)
744 : {
745 : return (__m128) __builtin_ia32_loadhps ((__v4sf)__A, (const __v2sf *)__P);
746 : }
747 :
748 : /* Stores the upper two SPFP values of A into P. */
749 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
750 : _mm_storeh_pi (__m64 *__P, __m128 __A)
751 : {
752 : __builtin_ia32_storehps ((__v2sf *)__P, (__v4sf)__A);
753 : }
754 :
755 : /* Moves the upper two values of B into the lower two values of A. */
756 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
757 : _mm_movehl_ps (__m128 __A, __m128 __B)
758 : {
759 : return (__m128) __builtin_ia32_movhlps ((__v4sf)__A, (__v4sf)__B);
760 : }
761 :
762 : /* Moves the lower two values of B into the upper two values of A. */
763 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
764 : _mm_movelh_ps (__m128 __A, __m128 __B)
765 : {
766 : return (__m128) __builtin_ia32_movlhps ((__v4sf)__A, (__v4sf)__B);
767 : }
768 :
769 : /* Sets the lower two SPFP values with 64-bits of data loaded from P;
770 : the upper two values are passed through from A. */
771 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
772 : _mm_loadl_pi (__m128 __A, __m64 const *__P)
773 : {
774 : return (__m128) __builtin_ia32_loadlps ((__v4sf)__A, (const __v2sf *)__P);
775 : }
776 :
777 : /* Stores the lower two SPFP values of A into P. */
778 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
779 : _mm_storel_pi (__m64 *__P, __m128 __A)
780 : {
781 : __builtin_ia32_storelps ((__v2sf *)__P, (__v4sf)__A);
782 : }
783 :
784 : /* Creates a 4-bit mask from the most significant bits of the SPFP values. */
785 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
786 : _mm_movemask_ps (__m128 __A)
787 : {
788 : return __builtin_ia32_movmskps ((__v4sf)__A);
789 : }
790 :
791 : /* Return the contents of the control register. */
792 : extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
793 : _mm_getcsr (void)
794 : {
795 40570 : return __builtin_ia32_stmxcsr ();
796 : }
797 :
798 : /* Read exception bits from the control register. */
799 : extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
800 : _MM_GET_EXCEPTION_STATE (void)
801 : {
802 : return _mm_getcsr() & _MM_EXCEPT_MASK;
803 : }
804 :
805 : extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
806 : _MM_GET_EXCEPTION_MASK (void)
807 : {
808 : return _mm_getcsr() & _MM_MASK_MASK;
809 : }
810 :
811 : extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
812 : _MM_GET_ROUNDING_MODE (void)
813 : {
814 : return _mm_getcsr() & _MM_ROUND_MASK;
815 : }
816 :
817 : extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
818 : _MM_GET_FLUSH_ZERO_MODE (void)
819 : {
820 : return _mm_getcsr() & _MM_FLUSH_ZERO_MASK;
821 : }
822 :
823 : /* Set the control register to I. */
824 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
825 : _mm_setcsr (unsigned int __I)
826 : {
827 : __builtin_ia32_ldmxcsr (__I);
828 : }
829 :
830 : /* Set exception bits in the control register. */
831 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
832 : _MM_SET_EXCEPTION_STATE(unsigned int __mask)
833 : {
834 : _mm_setcsr((_mm_getcsr() & ~_MM_EXCEPT_MASK) | __mask);
835 : }
836 :
837 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
838 : _MM_SET_EXCEPTION_MASK (unsigned int __mask)
839 : {
840 : _mm_setcsr((_mm_getcsr() & ~_MM_MASK_MASK) | __mask);
841 : }
842 :
843 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
844 : _MM_SET_ROUNDING_MODE (unsigned int __mode)
845 : {
846 : _mm_setcsr((_mm_getcsr() & ~_MM_ROUND_MASK) | __mode);
847 : }
848 :
849 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
850 : _MM_SET_FLUSH_ZERO_MODE (unsigned int __mode)
851 : {
852 : _mm_setcsr((_mm_getcsr() & ~_MM_FLUSH_ZERO_MASK) | __mode);
853 : }
854 :
855 : /* Create a vector with element 0 as F and the rest zero. */
856 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
857 : _mm_set_ss (float __F)
858 : {
859 : return __extension__ (__m128)(__v4sf){ __F, 0.0f, 0.0f, 0.0f };
860 : }
861 :
862 : /* Create a vector with all four elements equal to F. */
863 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
864 : _mm_set1_ps (float __F)
865 : {
866 : return __extension__ (__m128)(__v4sf){ __F, __F, __F, __F };
867 : }
868 :
869 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
870 : _mm_set_ps1 (float __F)
871 : {
872 : return _mm_set1_ps (__F);
873 : }
874 :
875 : /* Create a vector with element 0 as *P and the rest zero. */
876 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
877 : _mm_load_ss (float const *__P)
878 : {
879 : return _mm_set_ss (*__P);
880 : }
881 :
882 : /* Create a vector with all four elements equal to *P. */
883 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
884 : _mm_load1_ps (float const *__P)
885 : {
886 : return _mm_set1_ps (*__P);
887 : }
888 :
889 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
890 : _mm_load_ps1 (float const *__P)
891 : {
892 : return _mm_load1_ps (__P);
893 : }
894 :
895 : /* Load four SPFP values from P. The address must be 16-byte aligned. */
896 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
897 : _mm_load_ps (float const *__P)
898 : {
899 : return (__m128) *(__v4sf *)__P;
900 : }
901 :
902 : /* Load four SPFP values from P. The address need not be 16-byte aligned. */
903 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
904 : _mm_loadu_ps (float const *__P)
905 : {
906 : return (__m128) __builtin_ia32_loadups (__P);
907 : }
908 :
909 : /* Load four SPFP values in reverse order. The address must be aligned. */
910 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
911 : _mm_loadr_ps (float const *__P)
912 : {
913 : __v4sf __tmp = *(__v4sf *)__P;
914 : return (__m128) __builtin_ia32_shufps (__tmp, __tmp, _MM_SHUFFLE (0,1,2,3));
915 : }
916 :
917 : /* Create the vector [Z Y X W]. */
918 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
919 : _mm_set_ps (const float __Z, const float __Y, const float __X, const float __W)
920 : {
921 : return __extension__ (__m128)(__v4sf){ __W, __X, __Y, __Z };
922 : }
923 :
924 : /* Create the vector [W X Y Z]. */
925 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
926 : _mm_setr_ps (float __Z, float __Y, float __X, float __W)
927 : {
928 : return __extension__ (__m128)(__v4sf){ __Z, __Y, __X, __W };
929 : }
930 :
931 : /* Stores the lower SPFP value. */
932 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
933 : _mm_store_ss (float *__P, __m128 __A)
934 : {
935 : *__P = __builtin_ia32_vec_ext_v4sf ((__v4sf)__A, 0);
936 : }
937 :
938 : extern __inline float __attribute__((__gnu_inline__, __always_inline__, __artificial__))
939 : _mm_cvtss_f32 (__m128 __A)
940 : {
941 : return __builtin_ia32_vec_ext_v4sf ((__v4sf)__A, 0);
942 : }
943 :
944 : /* Store four SPFP values. The address must be 16-byte aligned. */
945 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
946 : _mm_store_ps (float *__P, __m128 __A)
947 : {
948 : *(__v4sf *)__P = (__v4sf)__A;
949 : }
950 :
951 : /* Store four SPFP values. The address need not be 16-byte aligned. */
952 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
953 : _mm_storeu_ps (float *__P, __m128 __A)
954 : {
955 : __builtin_ia32_storeups (__P, (__v4sf)__A);
956 : }
957 :
958 : /* Store the lower SPFP value across four words. */
959 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
960 : _mm_store1_ps (float *__P, __m128 __A)
961 : {
962 : __v4sf __va = (__v4sf)__A;
963 : __v4sf __tmp = __builtin_ia32_shufps (__va, __va, _MM_SHUFFLE (0,0,0,0));
964 : _mm_storeu_ps (__P, __tmp);
965 : }
966 :
967 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
968 : _mm_store_ps1 (float *__P, __m128 __A)
969 : {
970 : _mm_store1_ps (__P, __A);
971 : }
972 :
973 : /* Store four SPFP values in reverse order. The address must be aligned. */
974 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
975 : _mm_storer_ps (float *__P, __m128 __A)
976 : {
977 : __v4sf __va = (__v4sf)__A;
978 : __v4sf __tmp = __builtin_ia32_shufps (__va, __va, _MM_SHUFFLE (0,1,2,3));
979 : _mm_store_ps (__P, __tmp);
980 : }
981 :
982 : /* Sets the low SPFP value of A from the low value of B. */
983 : extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
984 : _mm_move_ss (__m128 __A, __m128 __B)
985 : {
986 : return (__m128) __builtin_ia32_movss ((__v4sf)__A, (__v4sf)__B);
987 : }
988 :
989 : /* Extracts one of the four words of A. The selector N must be immediate. */
990 : #ifdef __OPTIMIZE__
991 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
992 : _mm_extract_pi16 (__m64 const __A, int const __N)
993 : {
994 : return __builtin_ia32_vec_ext_v4hi ((__v4hi)__A, __N);
995 : }
996 :
997 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
998 : _m_pextrw (__m64 const __A, int const __N)
999 : {
1000 : return _mm_extract_pi16 (__A, __N);
1001 : }
1002 : #else
1003 : #define _mm_extract_pi16(A, N) \
1004 : ((int) __builtin_ia32_vec_ext_v4hi ((__v4hi)(__m64)(A), (int)(N)))
1005 :
1006 : #define _m_pextrw(A, N) _mm_extract_pi16(A, N)
1007 : #endif
1008 :
1009 : /* Inserts word D into one of four words of A. The selector N must be
1010 : immediate. */
1011 : #ifdef __OPTIMIZE__
1012 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1013 : _mm_insert_pi16 (__m64 const __A, int const __D, int const __N)
1014 : {
1015 : return (__m64) __builtin_ia32_vec_set_v4hi ((__v4hi)__A, __D, __N);
1016 : }
1017 :
1018 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1019 : _m_pinsrw (__m64 const __A, int const __D, int const __N)
1020 : {
1021 : return _mm_insert_pi16 (__A, __D, __N);
1022 : }
1023 : #else
1024 : #define _mm_insert_pi16(A, D, N) \
1025 : ((__m64) __builtin_ia32_vec_set_v4hi ((__v4hi)(__m64)(A), \
1026 : (int)(D), (int)(N)))
1027 :
1028 : #define _m_pinsrw(A, D, N) _mm_insert_pi16(A, D, N)
1029 : #endif
1030 :
1031 : /* Compute the element-wise maximum of signed 16-bit values. */
1032 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1033 : _mm_max_pi16 (__m64 __A, __m64 __B)
1034 : {
1035 : return (__m64) __builtin_ia32_pmaxsw ((__v4hi)__A, (__v4hi)__B);
1036 : }
1037 :
1038 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1039 : _m_pmaxsw (__m64 __A, __m64 __B)
1040 : {
1041 : return _mm_max_pi16 (__A, __B);
1042 : }
1043 :
1044 : /* Compute the element-wise maximum of unsigned 8-bit values. */
1045 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1046 : _mm_max_pu8 (__m64 __A, __m64 __B)
1047 : {
1048 : return (__m64) __builtin_ia32_pmaxub ((__v8qi)__A, (__v8qi)__B);
1049 : }
1050 :
1051 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1052 : _m_pmaxub (__m64 __A, __m64 __B)
1053 : {
1054 : return _mm_max_pu8 (__A, __B);
1055 : }
1056 :
1057 : /* Compute the element-wise minimum of signed 16-bit values. */
1058 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1059 : _mm_min_pi16 (__m64 __A, __m64 __B)
1060 : {
1061 : return (__m64) __builtin_ia32_pminsw ((__v4hi)__A, (__v4hi)__B);
1062 : }
1063 :
1064 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1065 : _m_pminsw (__m64 __A, __m64 __B)
1066 : {
1067 : return _mm_min_pi16 (__A, __B);
1068 : }
1069 :
1070 : /* Compute the element-wise minimum of unsigned 8-bit values. */
1071 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1072 : _mm_min_pu8 (__m64 __A, __m64 __B)
1073 : {
1074 : return (__m64) __builtin_ia32_pminub ((__v8qi)__A, (__v8qi)__B);
1075 : }
1076 :
1077 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1078 : _m_pminub (__m64 __A, __m64 __B)
1079 : {
1080 : return _mm_min_pu8 (__A, __B);
1081 : }
1082 :
1083 : /* Create an 8-bit mask of the signs of 8-bit values. */
1084 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1085 : _mm_movemask_pi8 (__m64 __A)
1086 : {
1087 : return __builtin_ia32_pmovmskb ((__v8qi)__A);
1088 : }
1089 :
1090 : extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1091 : _m_pmovmskb (__m64 __A)
1092 : {
1093 : return _mm_movemask_pi8 (__A);
1094 : }
1095 :
1096 : /* Multiply four unsigned 16-bit values in A by four unsigned 16-bit values
1097 : in B and produce the high 16 bits of the 32-bit results. */
1098 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1099 : _mm_mulhi_pu16 (__m64 __A, __m64 __B)
1100 : {
1101 : return (__m64) __builtin_ia32_pmulhuw ((__v4hi)__A, (__v4hi)__B);
1102 : }
1103 :
1104 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1105 : _m_pmulhuw (__m64 __A, __m64 __B)
1106 : {
1107 : return _mm_mulhi_pu16 (__A, __B);
1108 : }
1109 :
1110 : /* Return a combination of the four 16-bit values in A. The selector
1111 : must be an immediate. */
1112 : #ifdef __OPTIMIZE__
1113 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1114 : _mm_shuffle_pi16 (__m64 __A, int const __N)
1115 : {
1116 : return (__m64) __builtin_ia32_pshufw ((__v4hi)__A, __N);
1117 : }
1118 :
1119 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1120 : _m_pshufw (__m64 __A, int const __N)
1121 : {
1122 : return _mm_shuffle_pi16 (__A, __N);
1123 : }
1124 : #else
1125 : #define _mm_shuffle_pi16(A, N) \
1126 : ((__m64) __builtin_ia32_pshufw ((__v4hi)(__m64)(A), (int)(N)))
1127 :
1128 : #define _m_pshufw(A, N) _mm_shuffle_pi16 (A, N)
1129 : #endif
1130 :
1131 : /* Conditionally store byte elements of A into P. The high bit of each
1132 : byte in the selector N determines whether the corresponding byte from
1133 : A is stored. */
1134 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1135 : _mm_maskmove_si64 (__m64 __A, __m64 __N, char *__P)
1136 : {
1137 : __builtin_ia32_maskmovq ((__v8qi)__A, (__v8qi)__N, __P);
1138 : }
1139 :
1140 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1141 : _m_maskmovq (__m64 __A, __m64 __N, char *__P)
1142 : {
1143 : _mm_maskmove_si64 (__A, __N, __P);
1144 : }
1145 :
1146 : /* Compute the rounded averages of the unsigned 8-bit values in A and B. */
1147 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1148 : _mm_avg_pu8 (__m64 __A, __m64 __B)
1149 : {
1150 : return (__m64) __builtin_ia32_pavgb ((__v8qi)__A, (__v8qi)__B);
1151 : }
1152 :
1153 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1154 : _m_pavgb (__m64 __A, __m64 __B)
1155 : {
1156 : return _mm_avg_pu8 (__A, __B);
1157 : }
1158 :
1159 : /* Compute the rounded averages of the unsigned 16-bit values in A and B. */
1160 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1161 : _mm_avg_pu16 (__m64 __A, __m64 __B)
1162 : {
1163 : return (__m64) __builtin_ia32_pavgw ((__v4hi)__A, (__v4hi)__B);
1164 : }
1165 :
1166 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1167 : _m_pavgw (__m64 __A, __m64 __B)
1168 : {
1169 : return _mm_avg_pu16 (__A, __B);
1170 : }
1171 :
1172 : /* Compute the sum of the absolute differences of the unsigned 8-bit
1173 : values in A and B. Return the value in the lower 16-bit word; the
1174 : upper words are cleared. */
1175 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1176 : _mm_sad_pu8 (__m64 __A, __m64 __B)
1177 : {
1178 : return (__m64) __builtin_ia32_psadbw ((__v8qi)__A, (__v8qi)__B);
1179 : }
1180 :
1181 : extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1182 : _m_psadbw (__m64 __A, __m64 __B)
1183 : {
1184 : return _mm_sad_pu8 (__A, __B);
1185 : }
1186 :
1187 : /* Loads one cache line from address P to a location "closer" to the
1188 : processor. The selector I specifies the type of prefetch operation. */
1189 : #ifdef __OPTIMIZE__
1190 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1191 : _mm_prefetch (const void *__P, enum _mm_hint __I)
1192 : {
1193 : __builtin_prefetch (__P, 0, __I);
1194 : }
1195 : #else
1196 : #define _mm_prefetch(P, I) \
1197 : __builtin_prefetch ((P), 0, (I))
1198 : #endif
1199 :
1200 : /* Stores the data in A to the address P without polluting the caches. */
1201 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1202 : _mm_stream_pi (__m64 *__P, __m64 __A)
1203 : {
1204 : __builtin_ia32_movntq ((unsigned long long *)__P, (unsigned long long)__A);
1205 : }
1206 :
1207 : /* Likewise. The address must be 16-byte aligned. */
1208 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1209 : _mm_stream_ps (float *__P, __m128 __A)
1210 : {
1211 : __builtin_ia32_movntps (__P, (__v4sf)__A);
1212 : }
1213 :
1214 : /* Guarantees that every preceding store is globally visible before
1215 : any subsequent store. */
1216 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1217 : _mm_sfence (void)
1218 : {
1219 : __builtin_ia32_sfence ();
1220 : }
1221 :
1222 : /* The execution of the next instruction is delayed by an implementation
1223 : specific amount of time. The instruction does not modify the
1224 : architectural state. */
1225 : extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1226 : _mm_pause (void)
1227 : {
1228 : __asm__ __volatile__ ("rep; nop" : : );
1229 : }
1230 :
1231 : /* Transpose the 4x4 matrix composed of row[0-3]. */
1232 : #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
1233 : do { \
1234 : __v4sf __r0 = (row0), __r1 = (row1), __r2 = (row2), __r3 = (row3); \
1235 : __v4sf __t0 = __builtin_ia32_unpcklps (__r0, __r1); \
1236 : __v4sf __t1 = __builtin_ia32_unpcklps (__r2, __r3); \
1237 : __v4sf __t2 = __builtin_ia32_unpckhps (__r0, __r1); \
1238 : __v4sf __t3 = __builtin_ia32_unpckhps (__r2, __r3); \
1239 : (row0) = __builtin_ia32_movlhps (__t0, __t1); \
1240 : (row1) = __builtin_ia32_movhlps (__t1, __t0); \
1241 : (row2) = __builtin_ia32_movlhps (__t2, __t3); \
1242 : (row3) = __builtin_ia32_movhlps (__t3, __t2); \
1243 : } while (0)
1244 :
1245 : /* For backward source compatibility. */
1246 : #ifdef __SSE2__
1247 : # include <emmintrin.h>
1248 : #endif
1249 :
1250 : #endif /* __SSE__ */
1251 : #endif /* _XMMINTRIN_H_INCLUDED */
|