1 : // Map implementation -*- C++ -*-
2 :
3 : // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 : // 2011 Free Software Foundation, Inc.
5 : //
6 : // This file is part of the GNU ISO C++ Library. This library is free
7 : // software; you can redistribute it and/or modify it under the
8 : // terms of the GNU General Public License as published by the
9 : // Free Software Foundation; either version 3, or (at your option)
10 : // any later version.
11 :
12 : // This library is distributed in the hope that it will be useful,
13 : // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 : // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 : // GNU General Public License for more details.
16 :
17 : // Under Section 7 of GPL version 3, you are granted additional
18 : // permissions described in the GCC Runtime Library Exception, version
19 : // 3.1, as published by the Free Software Foundation.
20 :
21 : // You should have received a copy of the GNU General Public License and
22 : // a copy of the GCC Runtime Library Exception along with this program;
23 : // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 : // <http://www.gnu.org/licenses/>.
25 :
26 : /*
27 : *
28 : * Copyright (c) 1994
29 : * Hewlett-Packard Company
30 : *
31 : * Permission to use, copy, modify, distribute and sell this software
32 : * and its documentation for any purpose is hereby granted without fee,
33 : * provided that the above copyright notice appear in all copies and
34 : * that both that copyright notice and this permission notice appear
35 : * in supporting documentation. Hewlett-Packard Company makes no
36 : * representations about the suitability of this software for any
37 : * purpose. It is provided "as is" without express or implied warranty.
38 : *
39 : *
40 : * Copyright (c) 1996,1997
41 : * Silicon Graphics Computer Systems, Inc.
42 : *
43 : * Permission to use, copy, modify, distribute and sell this software
44 : * and its documentation for any purpose is hereby granted without fee,
45 : * provided that the above copyright notice appear in all copies and
46 : * that both that copyright notice and this permission notice appear
47 : * in supporting documentation. Silicon Graphics makes no
48 : * representations about the suitability of this software for any
49 : * purpose. It is provided "as is" without express or implied warranty.
50 : */
51 :
52 : /** @file bits/stl_map.h
53 : * This is an internal header file, included by other library headers.
54 : * Do not attempt to use it directly. @headername{map}
55 : */
56 :
57 : #ifndef _STL_MAP_H
58 : #define _STL_MAP_H 1
59 :
60 : #include <bits/functexcept.h>
61 : #include <bits/concept_check.h>
62 : #include <initializer_list>
63 :
64 : namespace std _GLIBCXX_VISIBILITY(default)
65 : {
66 : _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
67 :
68 : /**
69 : * @brief A standard container made up of (key,value) pairs, which can be
70 : * retrieved based on a key, in logarithmic time.
71 : *
72 : * @ingroup associative_containers
73 : *
74 : * Meets the requirements of a <a href="tables.html#65">container</a>, a
75 : * <a href="tables.html#66">reversible container</a>, and an
76 : * <a href="tables.html#69">associative container</a> (using unique keys).
77 : * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
78 : * value_type is std::pair<const Key,T>.
79 : *
80 : * Maps support bidirectional iterators.
81 : *
82 : * The private tree data is declared exactly the same way for map and
83 : * multimap; the distinction is made entirely in how the tree functions are
84 : * called (*_unique versus *_equal, same as the standard).
85 : */
86 : template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
87 : typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
88 133 : class map
89 : {
90 : public:
91 : typedef _Key key_type;
92 : typedef _Tp mapped_type;
93 : typedef std::pair<const _Key, _Tp> value_type;
94 : typedef _Compare key_compare;
95 : typedef _Alloc allocator_type;
96 :
97 : private:
98 : // concept requirements
99 : typedef typename _Alloc::value_type _Alloc_value_type;
100 : __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
101 : __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
102 : _BinaryFunctionConcept)
103 : __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
104 :
105 : public:
106 : class value_compare
107 : : public std::binary_function<value_type, value_type, bool>
108 : {
109 : friend class map<_Key, _Tp, _Compare, _Alloc>;
110 : protected:
111 : _Compare comp;
112 :
113 : value_compare(_Compare __c)
114 : : comp(__c) { }
115 :
116 : public:
117 : bool operator()(const value_type& __x, const value_type& __y) const
118 : { return comp(__x.first, __y.first); }
119 : };
120 :
121 : private:
122 : /// This turns a red-black tree into a [multi]map.
123 : typedef typename _Alloc::template rebind<value_type>::other
124 : _Pair_alloc_type;
125 :
126 : typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
127 : key_compare, _Pair_alloc_type> _Rep_type;
128 :
129 : /// The actual tree structure.
130 : _Rep_type _M_t;
131 :
132 : public:
133 : // many of these are specified differently in ISO, but the following are
134 : // "functionally equivalent"
135 : typedef typename _Pair_alloc_type::pointer pointer;
136 : typedef typename _Pair_alloc_type::const_pointer const_pointer;
137 : typedef typename _Pair_alloc_type::reference reference;
138 : typedef typename _Pair_alloc_type::const_reference const_reference;
139 : typedef typename _Rep_type::iterator iterator;
140 : typedef typename _Rep_type::const_iterator const_iterator;
141 : typedef typename _Rep_type::size_type size_type;
142 : typedef typename _Rep_type::difference_type difference_type;
143 : typedef typename _Rep_type::reverse_iterator reverse_iterator;
144 : typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
145 :
146 : // [23.3.1.1] construct/copy/destroy
147 : // (get_allocator() is normally listed in this section, but seems to have
148 : // been accidentally omitted in the printed standard)
149 : /**
150 : * @brief Default constructor creates no elements.
151 : */
152 211 : map()
153 211 : : _M_t() { }
154 :
155 : /**
156 : * @brief Creates a %map with no elements.
157 : * @param comp A comparison object.
158 : * @param a An allocator object.
159 : */
160 : explicit
161 : map(const _Compare& __comp,
162 : const allocator_type& __a = allocator_type())
163 : : _M_t(__comp, __a) { }
164 :
165 : /**
166 : * @brief %Map copy constructor.
167 : * @param x A %map of identical element and allocator types.
168 : *
169 : * The newly-created %map uses a copy of the allocation object
170 : * used by @a x.
171 : */
172 : map(const map& __x)
173 : : _M_t(__x._M_t) { }
174 :
175 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
176 : /**
177 : * @brief %Map move constructor.
178 : * @param x A %map of identical element and allocator types.
179 : *
180 : * The newly-created %map contains the exact contents of @a x.
181 : * The contents of @a x are a valid, but unspecified %map.
182 : */
183 : map(map&& __x)
184 : : _M_t(std::move(__x._M_t)) { }
185 :
186 : /**
187 : * @brief Builds a %map from an initializer_list.
188 : * @param l An initializer_list.
189 : * @param comp A comparison object.
190 : * @param a An allocator object.
191 : *
192 : * Create a %map consisting of copies of the elements in the
193 : * initializer_list @a l.
194 : * This is linear in N if the range is already sorted, and NlogN
195 : * otherwise (where N is @a l.size()).
196 : */
197 : map(initializer_list<value_type> __l,
198 : const _Compare& __c = _Compare(),
199 : const allocator_type& __a = allocator_type())
200 : : _M_t(__c, __a)
201 : { _M_t._M_insert_unique(__l.begin(), __l.end()); }
202 : #endif
203 :
204 : /**
205 : * @brief Builds a %map from a range.
206 : * @param first An input iterator.
207 : * @param last An input iterator.
208 : *
209 : * Create a %map consisting of copies of the elements from [first,last).
210 : * This is linear in N if the range is already sorted, and NlogN
211 : * otherwise (where N is distance(first,last)).
212 : */
213 : template<typename _InputIterator>
214 : map(_InputIterator __first, _InputIterator __last)
215 : : _M_t()
216 : { _M_t._M_insert_unique(__first, __last); }
217 :
218 : /**
219 : * @brief Builds a %map from a range.
220 : * @param first An input iterator.
221 : * @param last An input iterator.
222 : * @param comp A comparison functor.
223 : * @param a An allocator object.
224 : *
225 : * Create a %map consisting of copies of the elements from [first,last).
226 : * This is linear in N if the range is already sorted, and NlogN
227 : * otherwise (where N is distance(first,last)).
228 : */
229 : template<typename _InputIterator>
230 : map(_InputIterator __first, _InputIterator __last,
231 : const _Compare& __comp,
232 : const allocator_type& __a = allocator_type())
233 : : _M_t(__comp, __a)
234 : { _M_t._M_insert_unique(__first, __last); }
235 :
236 : // FIXME There is no dtor declared, but we should have something
237 : // generated by Doxygen. I don't know what tags to add to this
238 : // paragraph to make that happen:
239 : /**
240 : * The dtor only erases the elements, and note that if the elements
241 : * themselves are pointers, the pointed-to memory is not touched in any
242 : * way. Managing the pointer is the user's responsibility.
243 : */
244 :
245 : /**
246 : * @brief %Map assignment operator.
247 : * @param x A %map of identical element and allocator types.
248 : *
249 : * All the elements of @a x are copied, but unlike the copy constructor,
250 : * the allocator object is not copied.
251 : */
252 : map&
253 : operator=(const map& __x)
254 : {
255 : _M_t = __x._M_t;
256 : return *this;
257 : }
258 :
259 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
260 : /**
261 : * @brief %Map move assignment operator.
262 : * @param x A %map of identical element and allocator types.
263 : *
264 : * The contents of @a x are moved into this map (without copying).
265 : * @a x is a valid, but unspecified %map.
266 : */
267 : map&
268 : operator=(map&& __x)
269 : {
270 : // NB: DR 1204.
271 : // NB: DR 675.
272 : this->clear();
273 : this->swap(__x);
274 : return *this;
275 : }
276 :
277 : /**
278 : * @brief %Map list assignment operator.
279 : * @param l An initializer_list.
280 : *
281 : * This function fills a %map with copies of the elements in the
282 : * initializer list @a l.
283 : *
284 : * Note that the assignment completely changes the %map and
285 : * that the resulting %map's size is the same as the number
286 : * of elements assigned. Old data may be lost.
287 : */
288 : map&
289 : operator=(initializer_list<value_type> __l)
290 : {
291 : this->clear();
292 : this->insert(__l.begin(), __l.end());
293 : return *this;
294 : }
295 : #endif
296 :
297 : /// Get a copy of the memory allocation object.
298 : allocator_type
299 : get_allocator() const
300 : { return _M_t.get_allocator(); }
301 :
302 : // iterators
303 : /**
304 : * Returns a read/write iterator that points to the first pair in the
305 : * %map.
306 : * Iteration is done in ascending order according to the keys.
307 : */
308 : iterator
309 535 : begin()
310 535 : { return _M_t.begin(); }
311 :
312 : /**
313 : * Returns a read-only (constant) iterator that points to the first pair
314 : * in the %map. Iteration is done in ascending order according to the
315 : * keys.
316 : */
317 : const_iterator
318 0 : begin() const
319 0 : { return _M_t.begin(); }
320 :
321 : /**
322 : * Returns a read/write iterator that points one past the last
323 : * pair in the %map. Iteration is done in ascending order
324 : * according to the keys.
325 : */
326 : iterator
327 13324 : end()
328 13324 : { return _M_t.end(); }
329 :
330 : /**
331 : * Returns a read-only (constant) iterator that points one past the last
332 : * pair in the %map. Iteration is done in ascending order according to
333 : * the keys.
334 : */
335 : const_iterator
336 4 : end() const
337 4 : { return _M_t.end(); }
338 :
339 : /**
340 : * Returns a read/write reverse iterator that points to the last pair in
341 : * the %map. Iteration is done in descending order according to the
342 : * keys.
343 : */
344 : reverse_iterator
345 : rbegin()
346 : { return _M_t.rbegin(); }
347 :
348 : /**
349 : * Returns a read-only (constant) reverse iterator that points to the
350 : * last pair in the %map. Iteration is done in descending order
351 : * according to the keys.
352 : */
353 : const_reverse_iterator
354 : rbegin() const
355 : { return _M_t.rbegin(); }
356 :
357 : /**
358 : * Returns a read/write reverse iterator that points to one before the
359 : * first pair in the %map. Iteration is done in descending order
360 : * according to the keys.
361 : */
362 : reverse_iterator
363 : rend()
364 : { return _M_t.rend(); }
365 :
366 : /**
367 : * Returns a read-only (constant) reverse iterator that points to one
368 : * before the first pair in the %map. Iteration is done in descending
369 : * order according to the keys.
370 : */
371 : const_reverse_iterator
372 : rend() const
373 : { return _M_t.rend(); }
374 :
375 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
376 : /**
377 : * Returns a read-only (constant) iterator that points to the first pair
378 : * in the %map. Iteration is done in ascending order according to the
379 : * keys.
380 : */
381 : const_iterator
382 : cbegin() const
383 : { return _M_t.begin(); }
384 :
385 : /**
386 : * Returns a read-only (constant) iterator that points one past the last
387 : * pair in the %map. Iteration is done in ascending order according to
388 : * the keys.
389 : */
390 : const_iterator
391 : cend() const
392 : { return _M_t.end(); }
393 :
394 : /**
395 : * Returns a read-only (constant) reverse iterator that points to the
396 : * last pair in the %map. Iteration is done in descending order
397 : * according to the keys.
398 : */
399 : const_reverse_iterator
400 : crbegin() const
401 : { return _M_t.rbegin(); }
402 :
403 : /**
404 : * Returns a read-only (constant) reverse iterator that points to one
405 : * before the first pair in the %map. Iteration is done in descending
406 : * order according to the keys.
407 : */
408 : const_reverse_iterator
409 : crend() const
410 : { return _M_t.rend(); }
411 : #endif
412 :
413 : // capacity
414 : /** Returns true if the %map is empty. (Thus begin() would equal
415 : * end().)
416 : */
417 : bool
418 : empty() const
419 : { return _M_t.empty(); }
420 :
421 : /** Returns the size of the %map. */
422 : size_type
423 0 : size() const
424 0 : { return _M_t.size(); }
425 :
426 : /** Returns the maximum size of the %map. */
427 : size_type
428 : max_size() const
429 : { return _M_t.max_size(); }
430 :
431 : // [23.3.1.2] element access
432 : /**
433 : * @brief Subscript ( @c [] ) access to %map data.
434 : * @param k The key for which data should be retrieved.
435 : * @return A reference to the data of the (key,data) %pair.
436 : *
437 : * Allows for easy lookup with the subscript ( @c [] )
438 : * operator. Returns data associated with the key specified in
439 : * subscript. If the key does not exist, a pair with that key
440 : * is created using default values, which is then returned.
441 : *
442 : * Lookup requires logarithmic time.
443 : */
444 : mapped_type&
445 11367 : operator[](const key_type& __k)
446 : {
447 : // concept requirements
448 : __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
449 :
450 11367 : iterator __i = lower_bound(__k);
451 : // __i->first is greater than or equivalent to __k.
452 11367 : if (__i == end() || key_comp()(__k, (*__i).first))
453 744 : __i = insert(__i, value_type(__k, mapped_type()));
454 11367 : return (*__i).second;
455 : }
456 :
457 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
458 : mapped_type&
459 : operator[](key_type&& __k)
460 : {
461 : // concept requirements
462 : __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
463 :
464 : iterator __i = lower_bound(__k);
465 : // __i->first is greater than or equivalent to __k.
466 : if (__i == end() || key_comp()(__k, (*__i).first))
467 : __i = insert(__i, std::make_pair(std::move(__k), mapped_type()));
468 : return (*__i).second;
469 : }
470 : #endif
471 :
472 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
473 : // DR 464. Suggestion for new member functions in standard containers.
474 : /**
475 : * @brief Access to %map data.
476 : * @param k The key for which data should be retrieved.
477 : * @return A reference to the data whose key is equivalent to @a k, if
478 : * such a data is present in the %map.
479 : * @throw std::out_of_range If no such data is present.
480 : */
481 : mapped_type&
482 : at(const key_type& __k)
483 : {
484 : iterator __i = lower_bound(__k);
485 : if (__i == end() || key_comp()(__k, (*__i).first))
486 : __throw_out_of_range(__N("map::at"));
487 : return (*__i).second;
488 : }
489 :
490 : const mapped_type&
491 : at(const key_type& __k) const
492 : {
493 : const_iterator __i = lower_bound(__k);
494 : if (__i == end() || key_comp()(__k, (*__i).first))
495 : __throw_out_of_range(__N("map::at"));
496 : return (*__i).second;
497 : }
498 :
499 : // modifiers
500 : /**
501 : * @brief Attempts to insert a std::pair into the %map.
502 :
503 : * @param x Pair to be inserted (see std::make_pair for easy creation
504 : * of pairs).
505 :
506 : * @return A pair, of which the first element is an iterator that
507 : * points to the possibly inserted pair, and the second is
508 : * a bool that is true if the pair was actually inserted.
509 : *
510 : * This function attempts to insert a (key, value) %pair into the %map.
511 : * A %map relies on unique keys and thus a %pair is only inserted if its
512 : * first element (the key) is not already present in the %map.
513 : *
514 : * Insertion requires logarithmic time.
515 : */
516 : std::pair<iterator, bool>
517 : insert(const value_type& __x)
518 : { return _M_t._M_insert_unique(__x); }
519 :
520 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
521 : template<typename _Pair, typename = typename
522 : std::enable_if<std::is_convertible<_Pair,
523 : value_type>::value>::type>
524 : std::pair<iterator, bool>
525 : insert(_Pair&& __x)
526 : { return _M_t._M_insert_unique(std::forward<_Pair>(__x)); }
527 : #endif
528 :
529 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
530 : /**
531 : * @brief Attempts to insert a list of std::pairs into the %map.
532 : * @param list A std::initializer_list<value_type> of pairs to be
533 : * inserted.
534 : *
535 : * Complexity similar to that of the range constructor.
536 : */
537 : void
538 : insert(std::initializer_list<value_type> __list)
539 : { insert(__list.begin(), __list.end()); }
540 : #endif
541 :
542 : /**
543 : * @brief Attempts to insert a std::pair into the %map.
544 : * @param position An iterator that serves as a hint as to where the
545 : * pair should be inserted.
546 : * @param x Pair to be inserted (see std::make_pair for easy creation
547 : * of pairs).
548 : * @return An iterator that points to the element with key of @a x (may
549 : * or may not be the %pair passed in).
550 : *
551 :
552 : * This function is not concerned about whether the insertion
553 : * took place, and thus does not return a boolean like the
554 : * single-argument insert() does. Note that the first
555 : * parameter is only a hint and can potentially improve the
556 : * performance of the insertion process. A bad hint would
557 : * cause no gains in efficiency.
558 : *
559 : * See
560 : * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
561 : * for more on @a hinting.
562 : *
563 : * Insertion requires logarithmic time (if the hint is not taken).
564 : */
565 : iterator
566 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
567 : insert(const_iterator __position, const value_type& __x)
568 : #else
569 744 : insert(iterator __position, const value_type& __x)
570 : #endif
571 744 : { return _M_t._M_insert_unique_(__position, __x); }
572 :
573 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
574 : template<typename _Pair, typename = typename
575 : std::enable_if<std::is_convertible<_Pair,
576 : value_type>::value>::type>
577 : iterator
578 : insert(const_iterator __position, _Pair&& __x)
579 : { return _M_t._M_insert_unique_(__position,
580 : std::forward<_Pair>(__x)); }
581 : #endif
582 :
583 : /**
584 : * @brief Template function that attempts to insert a range of elements.
585 : * @param first Iterator pointing to the start of the range to be
586 : * inserted.
587 : * @param last Iterator pointing to the end of the range.
588 : *
589 : * Complexity similar to that of the range constructor.
590 : */
591 : template<typename _InputIterator>
592 : void
593 : insert(_InputIterator __first, _InputIterator __last)
594 : { _M_t._M_insert_unique(__first, __last); }
595 :
596 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
597 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
598 : // DR 130. Associative erase should return an iterator.
599 : /**
600 : * @brief Erases an element from a %map.
601 : * @param position An iterator pointing to the element to be erased.
602 : * @return An iterator pointing to the element immediately following
603 : * @a position prior to the element being erased. If no such
604 : * element exists, end() is returned.
605 : *
606 : * This function erases an element, pointed to by the given
607 : * iterator, from a %map. Note that this function only erases
608 : * the element, and that if the element is itself a pointer,
609 : * the pointed-to memory is not touched in any way. Managing
610 : * the pointer is the user's responsibility.
611 : */
612 : iterator
613 : erase(const_iterator __position)
614 : { return _M_t.erase(__position); }
615 :
616 : // LWG 2059.
617 : iterator
618 : erase(iterator __position)
619 : { return _M_t.erase(__position); }
620 : #else
621 : /**
622 : * @brief Erases an element from a %map.
623 : * @param position An iterator pointing to the element to be erased.
624 : *
625 : * This function erases an element, pointed to by the given
626 : * iterator, from a %map. Note that this function only erases
627 : * the element, and that if the element is itself a pointer,
628 : * the pointed-to memory is not touched in any way. Managing
629 : * the pointer is the user's responsibility.
630 : */
631 : void
632 72 : erase(iterator __position)
633 72 : { _M_t.erase(__position); }
634 : #endif
635 :
636 : /**
637 : * @brief Erases elements according to the provided key.
638 : * @param x Key of element to be erased.
639 : * @return The number of elements erased.
640 : *
641 : * This function erases all the elements located by the given key from
642 : * a %map.
643 : * Note that this function only erases the element, and that if
644 : * the element is itself a pointer, the pointed-to memory is not touched
645 : * in any way. Managing the pointer is the user's responsibility.
646 : */
647 : size_type
648 : erase(const key_type& __x)
649 : { return _M_t.erase(__x); }
650 :
651 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
652 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
653 : // DR 130. Associative erase should return an iterator.
654 : /**
655 : * @brief Erases a [first,last) range of elements from a %map.
656 : * @param first Iterator pointing to the start of the range to be
657 : * erased.
658 : * @param last Iterator pointing to the end of the range to be erased.
659 : * @return The iterator @a last.
660 : *
661 : * This function erases a sequence of elements from a %map.
662 : * Note that this function only erases the element, and that if
663 : * the element is itself a pointer, the pointed-to memory is not touched
664 : * in any way. Managing the pointer is the user's responsibility.
665 : */
666 : iterator
667 : erase(const_iterator __first, const_iterator __last)
668 : { return _M_t.erase(__first, __last); }
669 : #else
670 : /**
671 : * @brief Erases a [first,last) range of elements from a %map.
672 : * @param first Iterator pointing to the start of the range to be
673 : * erased.
674 : * @param last Iterator pointing to the end of the range to be erased.
675 : *
676 : * This function erases a sequence of elements from a %map.
677 : * Note that this function only erases the element, and that if
678 : * the element is itself a pointer, the pointed-to memory is not touched
679 : * in any way. Managing the pointer is the user's responsibility.
680 : */
681 : void
682 : erase(iterator __first, iterator __last)
683 : { _M_t.erase(__first, __last); }
684 : #endif
685 :
686 : /**
687 : * @brief Swaps data with another %map.
688 : * @param x A %map of the same element and allocator types.
689 : *
690 : * This exchanges the elements between two maps in constant
691 : * time. (It is only swapping a pointer, an integer, and an
692 : * instance of the @c Compare type (which itself is often
693 : * stateless and empty), so it should be quite fast.) Note
694 : * that the global std::swap() function is specialized such
695 : * that std::swap(m1,m2) will feed to this function.
696 : */
697 : void
698 : swap(map& __x)
699 : { _M_t.swap(__x._M_t); }
700 :
701 : /**
702 : * Erases all elements in a %map. Note that this function only
703 : * erases the elements, and that if the elements themselves are
704 : * pointers, the pointed-to memory is not touched in any way.
705 : * Managing the pointer is the user's responsibility.
706 : */
707 : void
708 : clear()
709 : { _M_t.clear(); }
710 :
711 : // observers
712 : /**
713 : * Returns the key comparison object out of which the %map was
714 : * constructed.
715 : */
716 : key_compare
717 11041 : key_comp() const
718 11041 : { return _M_t.key_comp(); }
719 :
720 : /**
721 : * Returns a value comparison object, built from the key comparison
722 : * object out of which the %map was constructed.
723 : */
724 : value_compare
725 : value_comp() const
726 : { return value_compare(_M_t.key_comp()); }
727 :
728 : // [23.3.1.3] map operations
729 : /**
730 : * @brief Tries to locate an element in a %map.
731 : * @param x Key of (key, value) %pair to be located.
732 : * @return Iterator pointing to sought-after element, or end() if not
733 : * found.
734 : *
735 : * This function takes a key and tries to locate the element with which
736 : * the key matches. If successful the function returns an iterator
737 : * pointing to the sought after %pair. If unsuccessful it returns the
738 : * past-the-end ( @c end() ) iterator.
739 : */
740 : iterator
741 1240 : find(const key_type& __x)
742 1240 : { return _M_t.find(__x); }
743 :
744 : /**
745 : * @brief Tries to locate an element in a %map.
746 : * @param x Key of (key, value) %pair to be located.
747 : * @return Read-only (constant) iterator pointing to sought-after
748 : * element, or end() if not found.
749 : *
750 : * This function takes a key and tries to locate the element with which
751 : * the key matches. If successful the function returns a constant
752 : * iterator pointing to the sought after %pair. If unsuccessful it
753 : * returns the past-the-end ( @c end() ) iterator.
754 : */
755 : const_iterator
756 8 : find(const key_type& __x) const
757 8 : { return _M_t.find(__x); }
758 :
759 : /**
760 : * @brief Finds the number of elements with given key.
761 : * @param x Key of (key, value) pairs to be located.
762 : * @return Number of elements with specified key.
763 : *
764 : * This function only makes sense for multimaps; for map the result will
765 : * either be 0 (not present) or 1 (present).
766 : */
767 : size_type
768 : count(const key_type& __x) const
769 : { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
770 :
771 : /**
772 : * @brief Finds the beginning of a subsequence matching given key.
773 : * @param x Key of (key, value) pair to be located.
774 : * @return Iterator pointing to first element equal to or greater
775 : * than key, or end().
776 : *
777 : * This function returns the first element of a subsequence of elements
778 : * that matches the given key. If unsuccessful it returns an iterator
779 : * pointing to the first element that has a greater value than given key
780 : * or end() if no such element exists.
781 : */
782 : iterator
783 11367 : lower_bound(const key_type& __x)
784 11367 : { return _M_t.lower_bound(__x); }
785 :
786 : /**
787 : * @brief Finds the beginning of a subsequence matching given key.
788 : * @param x Key of (key, value) pair to be located.
789 : * @return Read-only (constant) iterator pointing to first element
790 : * equal to or greater than key, or end().
791 : *
792 : * This function returns the first element of a subsequence of elements
793 : * that matches the given key. If unsuccessful it returns an iterator
794 : * pointing to the first element that has a greater value than given key
795 : * or end() if no such element exists.
796 : */
797 : const_iterator
798 : lower_bound(const key_type& __x) const
799 : { return _M_t.lower_bound(__x); }
800 :
801 : /**
802 : * @brief Finds the end of a subsequence matching given key.
803 : * @param x Key of (key, value) pair to be located.
804 : * @return Iterator pointing to the first element
805 : * greater than key, or end().
806 : */
807 : iterator
808 : upper_bound(const key_type& __x)
809 : { return _M_t.upper_bound(__x); }
810 :
811 : /**
812 : * @brief Finds the end of a subsequence matching given key.
813 : * @param x Key of (key, value) pair to be located.
814 : * @return Read-only (constant) iterator pointing to first iterator
815 : * greater than key, or end().
816 : */
817 : const_iterator
818 : upper_bound(const key_type& __x) const
819 : { return _M_t.upper_bound(__x); }
820 :
821 : /**
822 : * @brief Finds a subsequence matching given key.
823 : * @param x Key of (key, value) pairs to be located.
824 : * @return Pair of iterators that possibly points to the subsequence
825 : * matching given key.
826 : *
827 : * This function is equivalent to
828 : * @code
829 : * std::make_pair(c.lower_bound(val),
830 : * c.upper_bound(val))
831 : * @endcode
832 : * (but is faster than making the calls separately).
833 : *
834 : * This function probably only makes sense for multimaps.
835 : */
836 : std::pair<iterator, iterator>
837 : equal_range(const key_type& __x)
838 : { return _M_t.equal_range(__x); }
839 :
840 : /**
841 : * @brief Finds a subsequence matching given key.
842 : * @param x Key of (key, value) pairs to be located.
843 : * @return Pair of read-only (constant) iterators that possibly points
844 : * to the subsequence matching given key.
845 : *
846 : * This function is equivalent to
847 : * @code
848 : * std::make_pair(c.lower_bound(val),
849 : * c.upper_bound(val))
850 : * @endcode
851 : * (but is faster than making the calls separately).
852 : *
853 : * This function probably only makes sense for multimaps.
854 : */
855 : std::pair<const_iterator, const_iterator>
856 : equal_range(const key_type& __x) const
857 : { return _M_t.equal_range(__x); }
858 :
859 : template<typename _K1, typename _T1, typename _C1, typename _A1>
860 : friend bool
861 : operator==(const map<_K1, _T1, _C1, _A1>&,
862 : const map<_K1, _T1, _C1, _A1>&);
863 :
864 : template<typename _K1, typename _T1, typename _C1, typename _A1>
865 : friend bool
866 : operator<(const map<_K1, _T1, _C1, _A1>&,
867 : const map<_K1, _T1, _C1, _A1>&);
868 : };
869 :
870 : /**
871 : * @brief Map equality comparison.
872 : * @param x A %map.
873 : * @param y A %map of the same type as @a x.
874 : * @return True iff the size and elements of the maps are equal.
875 : *
876 : * This is an equivalence relation. It is linear in the size of the
877 : * maps. Maps are considered equivalent if their sizes are equal,
878 : * and if corresponding elements compare equal.
879 : */
880 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
881 : inline bool
882 : operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
883 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
884 : { return __x._M_t == __y._M_t; }
885 :
886 : /**
887 : * @brief Map ordering relation.
888 : * @param x A %map.
889 : * @param y A %map of the same type as @a x.
890 : * @return True iff @a x is lexicographically less than @a y.
891 : *
892 : * This is a total ordering relation. It is linear in the size of the
893 : * maps. The elements must be comparable with @c <.
894 : *
895 : * See std::lexicographical_compare() for how the determination is made.
896 : */
897 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
898 : inline bool
899 : operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
900 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
901 : { return __x._M_t < __y._M_t; }
902 :
903 : /// Based on operator==
904 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
905 : inline bool
906 : operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
907 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
908 : { return !(__x == __y); }
909 :
910 : /// Based on operator<
911 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
912 : inline bool
913 : operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
914 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
915 : { return __y < __x; }
916 :
917 : /// Based on operator<
918 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
919 : inline bool
920 : operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
921 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
922 : { return !(__y < __x); }
923 :
924 : /// Based on operator<
925 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
926 : inline bool
927 : operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
928 : const map<_Key, _Tp, _Compare, _Alloc>& __y)
929 : { return !(__x < __y); }
930 :
931 : /// See std::map::swap().
932 : template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
933 : inline void
934 : swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
935 : map<_Key, _Tp, _Compare, _Alloc>& __y)
936 : { __x.swap(__y); }
937 :
938 : _GLIBCXX_END_NAMESPACE_CONTAINER
939 : } // namespace std
940 :
941 : #endif /* _STL_MAP_H */
|