Updated 29 Oct 2011

Please note: This document is an unfinished work in progress and is only provided at this early stage to help newcomers to get started! It will be
updated as time goes on. © James Boyd 2011

The text formatting will be reworked/corrected when complete. The PDF file format for work-in-progress releases is only being used in order to
preserve the text formatting while writing; other file formats should be possible!

Getting Started with Monkey

What is Monkey?

Monkey is a “games development environment” incorporating a text editor, an easily-learned programming
language and a set of standard memorable commands for graphics, audio and more.

At the time of writing, Monkey allows you to create games that run on multiple computer systems such as:
e Standard Windows PCs, including desktop PCs and laptops;

* Apple computers with Intel processors, such as iMacs and MacBooks;

o Web browsers, via the Flash and HTML5/Canvas standards;

* Mobile phones using the Android, Windows Phone 7 or iOS operating systems;

® Xbox 360, via the XNA platform.

Who is this book for?

This book is aimed primarily at the absolute beginner. If you've never written a line of code in your life, or
you've only dabbled in the past, Monkey will soon have you creating your own games, whether it's for your
own amusement, to impress your friends or even for cold hard profit.

You don't need any special skills, though it helps if you're good at thinking your way around a problem.

Contrary to popular belief, you don't even need to be particularly good at mathematics to write computer
games — depending on the type of game, of course.

What do | need?

For simplicity, this tutorial assumes you are testing on a PC or Mac and using the HTMLS5 target. You will
need an up-to-date web browser that supports HTML5 and its associated Canvas element. Any of the
following web browsers will be adequate, but please make sure you visit the relevant web site and download the
latest version or you may not have HTML5/Canvas support:

e Internet Explorer;
* Mozilla Firefox;

* Google Chrome;

* Opera.

Note that if you're using the demo version of Monkey, you'll only be able to write games for the HTML5
platform, and only for non-commercial purposes; it's otherwise fully functional.

You have to purchase Monkey in order to target the other platforms (which require some extra manual
setup), or to make commercial gain from your HTML5 games. The really cool part about Monkey is that you
can develop for the HTMLS5 platform and simply “rebuild” the same code for the other platforms when
you're ready.

This tutorial assumes you're running a Windows PC, but the process of creating folders, saving files and
running the Monk program editor is similar on other PC-type platforms, such as the Apple Mac.

Let's go!

Let's take a look at a very simple Monkey program; open up the Monk IDE (Integrated Development
Environment) from the main Monkey folder. Depending on your computer settings and operating system, it
should be listed as something like monk or monk.exe.

Run it as you would any other program and you'll be presented with the interface below:

& Monk_ \ [ESEE)

Eile Edit Program Help
s JB 1X H ‘ a,é ‘”4—, F, Q ‘ A :{ R — - ‘ 4 - -
Docs Mav Code |Debug

- =) Projects

rmonkey

RockOut
¢ L. Add Project

-- History

Welcome to monkey!
Click on the 'home' icon above to return to this page at any time.
« Getling started - Your journey starts herel
+ Sample programs - A taste of what monkey can do.
« Tutorials and articles - Tutorials and backgrounders.
« Modules reference - The monkey modules in all their glory.

« Language reference - The lowdown an the monkey programming
language.

» Credits - Who did what.

Come and visit us at www_monkeycoder.co.nz

Figure 1: The Monk IDE
The icons at the top are arranged into groups, as below:
File operations
* New file - Creates a new file
* Open file - Opens an existing file
® Close file - Closes the currently selected file
® Save file - Saves the currently selected file
Clipboard/text operations
® Cut - Cuts the selected text and places it on the clipboard

* Copy - Copies the selected text to the clipboard

e Paste - Paste text from the clipboard to the current editor location

* Find - Finds text within the currently selected file

Compiler/debugger operations

® Build - Compiles the program into a runnable program for the selected target platform
® Build and Run — The same as Build, but also runs the program if possible
e Step - Covered in later Debugging section

e Step In - Covered in later Debugging section

e Step Out - Covered in later Debugging section

e Stop — Terminate running program or stop build process.

Help operations

® Home - Show Monk home page

® Back - Go to previous document in history

® Forward - Go to next document in history

All of these operations are accessible from the menus at the top if you prefer to use them.

Creating a new program

Click on the New icon to open a new blank tab within the IDE; you should have one called Docs and another
called untitled1.monkey or similar. Each tab you open is effectively a separate text editor (similar to Notepad)

that operates on an individual file.

You can switch between tabs (and therefore files) by clicking the named tabs at the top. Try clicking Docs to
switch to the Monk home page, then click on untitled1.monkey to get back to where you were. It should look

something like this:

Eile Edit Program Help
e ke W3 T 7 rvd = = .
- H‘dh:rox‘,lﬂf*zzkl‘{}\,_n_,

untitledl.monkey

Docs Mav Code | Debug

=) Projects

Pl rnonkey

- RockOut

{ - Add Project
--Histu:ur_\.r

Line: 2 Char: 1

Figure 2: An untitled edit tab

The large blank area with the flashing edit cursor is where you type your program, and the icons and menus
at the top affect the currently selected tab's contents in various ways.

The first thing to do is decide where you are going to save your Monkey programs. We'll create a folder on
the desktop as an example: click using the right-most mouse button on a blank area of the Windows desktop.
(If you can't see it, minimise all open windows so you can see your backdrop picture.) From the resulting
pop-up menu, choose New, then Folder, then type in a name for the new folder: Monkey Programs, for
example.

Now go to the File menu in the Monk IDE and choose Save As. In the Save As dialog box, navigate to your
new folder through the Desktop link on the left-hand side, then click in the File name field at the bottom,
deleting anything that may be in there already.

Type in a name for your program and add .monkey on the end (that's dot monkey). For example, you could
type invaders.monkey or flowerpower.monkey; however, just type in hello.monkey for now. Once you've typed
this in, click Save to return to the editor. The tab at the top should now show your new file name and you can
simply click the Save icon to save changes to this file in future.

Creating a simple project: Hello, world!

We'll start with the traditional Hello, world! application that introduces almost every programming language
in the world: click in the blank text area of your new tab and type in the program below:

Function Main ()
Print “Hello, world!”

End

Type in the first line and press Enter (or Return) on your keyboard. Type the second line and press Enter. (To
get the indentation (or offset) before the Print keyword, first press the Tab key on the left edge of the
keyboard.) Finally, type the last line and press Enter. (You may find the last line is still indented, depending
on your Monk settings; if so, move the cursor to the start of the line and delete the blank area.)

Monkey is “case-sensitive”, meaning you have to use capital letters in the right places, so make sure that
what you type matches the above exactly.

Double-check that everything looks the same, editing it like any other text editor if not (using the cursors
and the Del/Backspace keys where necessary), then finally click the Build and Run icon to bring up the Monkey
Build window; it should all look something like this:

- . -
2 Monk - E/Docs/Development/Monkey Sources/hello.monk b@u

Eile Edit Program Help
e ke W3 T i rvd = o p
- H‘dh:rox‘,lﬁ/*zzkﬂ‘{}\,_n_,

- hello.mankey Mav Code | Debug

=) Projects

P rnonkey
RockOut

{ Add Project
B History

Line: 5 Char: 1

Figure 3: Building the Hello, world! program

Make sure that HTMLS5 is the selected target and click Build. For HTML5 programs, Monkey will run a tiny
program called MServer and open your default web browser. MServer will then 'feed’ your program to the
web browser, and you should see something like this:

MServer active and listening on port 50607

1= HTTP Server active and listening on port 49709

1:1» GET E:/Docs/Development/Monkey Sources/hello.build/htmi5/MonkeyGame.html (200 OK)
1:1> GET E:/Docs/Development/Monkey Sources/hello.build/htmi5/main.js (200 OK)

1:1> GET E:/Docs/Development/Monkey Sources/hello.build/html5/favicon.ico (200 OK)

/@loca|host:49?ng,rMonkeyGe < 4

C M | @ localhost:49709/MonkeyGame. htmi kgl

Hello world!

Figure 4: The Hello, world! program in all its glory

(The large blank area above the text is in fact the 'Canvas' where a game would normally appear.)

Now close the web browser and go back to Monk. Try changing the text between the quote marks (make
sure you leave them in place) and run it again to see the difference; repeat until you've had enough.

When you're done, click the Save icon, then the Close icon: Oh, no! Your precious work! All gone! Not really; to

get back to your previously saved work, run Monk, click the Open icon and choose hello.monkey from the
Open File dialog.

Hello, world! explained

Let's have a look at that program again and try to understand what it means:

Function Main ()
Print “Hello, world!”

End

The text that makes up a program like this is referred to as source code, often abbreviated simply as code. First
of all, let's strip this down to the smallest Monkey program you can write:

Function Main ()

End

This is called the Main function; it's required by every Monkey program and it's also the starting point for
every Monkey program. For now, consider a function to be a 'block' of code (that is, a bunch of related lines
of code) to be executed; but we'll cover functions in much more detail later on.

The first line features the special keyword Function, followed by the name of the function (Main in this case)
then a set of empty brackets. The second line, End, marks the end point of the function. The code we type in
between these two lines will define what the function actually does. In the case of Hello, world!, the code to be

executed is Print “Hello, world!”, which simply 'prints' the given text on the screen.

That's it!

Typing and indentation

Create a new file, as before, but give it a different name (still ending in .monkey), then type in these two lines:

Function Main ()

End

10

We're doing it this way to ensure right from the start that we have both the opening line and the matching
closing line; we'll fill in the rest afterwards.

Now move the edit cursor to the end of the first line (after the brackets) and press Enter to insert a blank line
between the two existing lines; it should look like this:

Function Main ()

End

Now, with the text cursor flashing at the start of the blank line, press the Tab key, which will shift the cursor
to the right. This indents any following text; that is, it shifts everything to the right, as you can see below:

Function Main ()

Print “Hello, world!”

Print “Hello, solar system!?”
Print “Hello, galaxy!”

Print “Hello, universe!”

End

Fill in a few Print lines as above, pressing Enter after each one.

Why use indentation?

The indentation is more important than you will probably appreciate at this point, so do make a point of
using it right from the start. Indentation is not technically required in order for the program to work, but
it really helps to make things readable later on; we can instantly see the indented block of code we've
created 'inside’ the Main function, and this becomes even more important when we start creating blocks
of code inside other blocks of code.

When you build and run the above example, Monkey goes to the start of the Main function and simply
executes each line in turn, in the order they are written. This order of execution is what we call program flow,
and later we'll see how this flow can be altered in order to perform different actions depending on the
situation.

Creating a project with external media

The previous examples only required the creation of a single file in order to run. However, games almost
always need sound and visuals, and this requires a little extra setup.

Summary of creating a new project

10

11

If you're new to managing files and folders, you can follow the full process outlined below for any new
project you create, but for those already familiar, the steps can be summarised as follows:

* create a new folder for your project, giving it a unique name of your choosing;

* decide on a 'base' name for your program, eg. gamename;

* create a Monkey source code file in the new folder and call it gamename.monkey;
* create a folder called gamename.data, making sure to use the same base name.

Note that Monkey source files are simple plain text files, so can be created and edited in any program
capable of editing such files, e.g. Notepad.

If you're not too familiar with file and folder management, the process outlined below may seem rather
involved, but this is mainly to make things as foolproof as possible while you get started; you'll soon pick it

up.

We're going to start by creating a folder specifically for our new project, so first minimise all open windows
so you can see your desktop background, and locate the folder you created earlier; it will be called Monkey
Programs if you used the suggestion given. Open it up and you'll probably notice your test programs from
earlier.

Right-click (that is, click with the right-most mouse button), on a blank area within this folder and choose
New from the menu, then choose Folder from the next menu. Type in a name for the project folder; let's call it
FirstGame for now. If you need to rename a file or folder at any point, eg. in case of a typo, right-click its icon

and select Rename from the menu.

You should be seeing something like this, but don't worry if it doesn't look exactly the same:

11

12

Ette Edit View Tools Help

Organize - = Open Include in library - Share with = Burn

File folder

‘ J |rstGame|

N FirstGame Date modified: 03/08/2011 14:57
J ' File folder

Date created: 03,/08,/2011 14:57 & Cornputer

Figure 5: Creating a project folder
Now create a new file via the Monk IDE (as you did for the Hello, world! example) and save it into the

FirstGame folder; call it firstgame.monkey. Go back to the desktop, navigate into the folder you just created and
you should see that the file has appeared here, as below:

12

13

e e)

File Edit View Tools Help

Organize * Include in library - Share with - Burn Mew folder

i, firstgame.monkey
€| MONKEY File

0 bytes

L 1 item

1 itemn (Disk free space: 840 ME) 0 bytes A Computer

Figure 6: The project’s main source file

We've now created a project folder called FirstGame and a program file called firstgame.monkey within that
project folder.

Lastly, we need to create a location for our graphics and any other external media (sounds, for example).
Make sure you're looking at the folder containing firstgame.monkey (as in the above image) and right-click on

a blank area to create another folder here. Name this folder firstgame.data.

Note carefully that the folder should take the same name as the program file, replacing .monkey with .data
(dot-data); this is very important! The end result should look something like this:

13

Edit View Tools Help

Organize - Include in library -

firstgarme.data
; File folder

k

Share with Burn Mew folder

firstgame.monkey
| MONKEY File
0 bytes

2 itemns (Disk free space: 840 ME)

0 bytes i Comnputer

Figure 7: The project’s main source file and associated media folder

Don't worry if it doesn't look exactly the same. Just make sure you have a program file and a folder with the
same 'base' name (firstgame in this case) sitting next to each other, and that the folder's name ends with .data.

If your program file appears to be missing the .monkey extension in this view, do the following to make it

appear:

* click on the Tools menu at the top and choose Folder Options. If you don't have the Tools menu, click
on Organize instead, then Folder and search options;

¢ in the new window, click on the View tab;

* un-check the option marked Hide extensions for known file types;

¢ click OK at the bottom.

Being able to see file extensions like this is a very useful option for programmers, as you'll see when you

come to using media files.

We're going to need a small image to put on the screen within our game, so download the image located at
the address below and place a copy in the firstgame.data folder:

14

15

http://www.hi-toro.com/boing.png

Type this address into your web browser and press Enter, then right-click the image and save it. In the event
that the web site is unavailable, you can use any other image of a similar size (256 x 256 pixels), as long as it
is in PNG format (ie. its name ends with .png). Make sure that the file you place in the firstgame.data folder
has the name boing.png; if not, right-click the file and choose Rename to change it.

Return to Monk and open or select the firstgame.monkey file if it isn't already selected, then type in the code
below, without worrying too much about how it works:

Import mojo
Function Main ()
New Game
End
Class Game Extends App
Field player:Image
Field x:Float
Field y:Float
Method OnCreate ()
player = LoadImage ("boing.png")
SetUpdateRate 60
End
Method OnUpdate ()
If KeyDown (KEY_LEFT) Then x = x - 4
If KeyDown (KEY_RIGHT) Then x = x + 4

If KeyDown (KEY_UP) Theny =y - 4
If KeyDown (KEY_DOWN) Then y =y +

4
End
Method OnRender ()

Cls 64, 96, 128
DrawImage player, X, y

End

End

Build and run this program (checking carefully for any typing errors if it doesn't run), and your web browser
should open up and the game appear within. You should then be able to control the movement of the
‘player' using the up/down/left/right cursor keys. When you're done, close the browser window.

We won't go into too much depth at this point, but we can take a look at the structure and layout of this
program in brief. It starts with:

Import mojo

This special line makes it possible for us to use Monkey's mojo module, which is a set of commands that give
us the ability to load and display graphics, play sounds, process mouse/keyboard input and so on.

15

http://www.hi-toro.com/boing.png

16

We then have a Main function, which you should hopefully recognise by now. (Don't worry about the
meaning of the code within Main, but do remember that the program flow always starts here.)

Following this is a block of code called a 'class’ (named Game here), which itself contains several blocks of
code. Note the three blocks of code that begin with Method and close with End, and how the code within
these blocks is further indented to the right. Again, this makes the identification of separate blocks, or
'chunks', of code much easier than if every line were to be aligned to the same left offset.

Also note that the indentation makes it possible to see that the Class at the start of the 'class' block matches
the final End in the program; so we have the outer class block, which then contains three indented 'method’
blocks, which each contain their own indented blocks of code. Again, don't worry about what it all means at
this point, but see if you can identify these indented blocks of code for yourself.

We also have some blank lines; again, these are optional, and you can have as many blank lines as you like,
and they help to further separate different blocks of code for enhanced readability. For comparison, here's
the same program without any indentation or spacing:

Import mojo

Function Main ()

New Game

End

Class Game Extends App

Field player:Image

Field x:Float

Field y:Float

Method OnCreate ()

player = LoadImage ("boing.png")
SetUpdateRate 60

End

Method OnUpdate ()

If KeyDown (KEY_LEFT) Then x = x - 4
If KeyDown (KEY_RIGHT) Then x = x + 4
If KeyDown (KEY_UP) Theny =y - 4
If KeyDown (KEY_DOWN) Then 'y =y + 4
End

Method OnRender ()

Cls 64, 96, 128

DrawImage player, X, y

End

End

This is just a mess, and it's much harder at a glance to locate the different blocks of code that form the
program. In a program containing hundreds or even thousands of lines, this really is a no-go!

Start using indentation and spacing from the very beginning. If you choose to ignore this advice, do be
prepared for experienced programmers to complain when you're posting code online for help! You should
make it as easy as possible for others to understand your code.

Comments

Finally, we'll add some comments to this code. Comments allow us to make notes within the program, which
can be used as a reminder as to how a particular piece of code works, or as an explanation to others that we

16

17

might share the code with. Comments are denoted using the ' symbol (an apostrophe), and Monkey simply
ignores everything that follows this symbol. You can add a comment to the end of an existing line of code or
dedicate a whole line to a comment. See if you can locate the comments here:

Import mojo ' This gives us graphics, etc!
' This is where the game begins...
Function Main ()

New Game
End
' Here's the Game class:
Class Game Extends App

Field player:Image ' Player image

Field x:Float ' Player's “across” position

Field y:Float ' Player's “down” position

Method OnCreate ()
player = LoadImage ("boing.png")
SetUpdateRate 60 ' Sixty frames per second!

End

Method OnUpdate ()

' This is where keyboard input is processed
' and applied to the player's position...

If KeyDown (KEY_LEFT) Then x = x - 4
If KeyDown (KEY_RIGHT) Then x = x + 4
If KeyDown (KEY_UP) Theny =y - 4
If KeyDown (KEY_DOWN) Then y =y + 4
End
Method OnRender ()

' Here's where we clear the screen and draw the player!

Cls 64, 96, 128 ' Each number here can be changed from ©-255!
DrawImage player, X, y

End

End

Comments are incredibly useful, as you will find yourself coming back to a program several months later
and wondering how on earth a certain section of code works, no matter how well you understood it at the

time!

Don't over-use comments, but do use them to explain anything that took you a while to figure out, and write
them as if you're explaining things to someone who's never seen your code before.

Disabling code with comments

Comments can be used to disable code, by placing the comment symbol at the start of a line, like this:

17

18

Function Main ()
Print “This will be printed...”
' Print “This won't!”

End

This allows us to “comment out” lines of code, as well as to “un-comment” (by removing the ' symbol) in
order to reinstate commented-out code, which is very handy for testing purposes.

Block comments

Commenting out one or two lines of code is easy enough, but it you want to comment out a whole block of
code, Monkey has a special 'compiler directive' (which gives special instructions to the code-reading part of
Monkey), #rem, which can be used like this:

Function Main ()
Print “This will be printed...”
#rem

Print “This won't be printed!”
Print “Same here!”
Print “And here!”

#end

End

Note the special character # (the hash symbol, sometimes known as pound), which denotes a compiler
directive. Anything placed between #rem and #end will be ignored, which is very handy for quickly disabling
huge chunks of code. Just remove #rem and #end to re-enable the relevant block of code.

Experiment!

You might like to play around with the above program before moving on. Here are few changes you could
make:

* change the image used. Copy another image of similar size into the firstgame.data folder. Ideally use
an image in PNG format (ends with .png), but you can also use JPEG files (ending in .jpg) too. Make
sure you change the file's name in the source code from boing.png to whatever your new image is
called!

* change the speed at which the image moves. (Hint: the current speed is 4, as found in the block of
code beginning with Method OnUpdate.)

* anything else you think might work! Don't worry if you 'break’ the program — you can always type it
in again if you really want to.

18

19

Basic programming concepts

Here's where we get serious! We're going to look at some of the core concepts of computer programming,
such as variables, program flow (and the closely related area of decision making), then dabble with object-oriented
programming, which allows for the development of more structured, manageable programs.

Variables

Computer programs need to store and retrieve information in order to function; for example, a game in
which the player fights against crazed alien space robots may need to keep track of information such as:

* how many lives the player has left;

¢ how much ammo remains;

¢ shield levels;

* player position;

* positions of all crazed alien space robots;
* and many other possibilities.

Information like this is stored in variables. In Monkey (as in most programming languages) a variable is a text
label — a word — chosen by the developer (that would be you!) and used within the source code of the game
to represent a particular piece of information.

Let's say we want to store a person's age so we can make use of it throughout the game. We can use almost
any word to represent this information, but it makes sense to use something relevant:

age = 25

Here we've created a variable called age and assigned it a value of 25. (You might read the above line as “age
equals 25”.) There's nothing to stop you storing someone's age in a variable called sausage, or tractor, or even
brontosaurus, but those names aren't going to help you remember that they represent someone's age!

Variable naming rules
There are some basic rules regarding the names you can give to variables:

* only letters, numbers and the underscore symbol can be used in a variable name;

* the name must not contain any spaces. For example, max health would not be a valid variable name,
but max_health (using the underscore symbol in place of a space) would be fine;

* avariable name cannot start with a number; the name must begin with either a letter or the
underscore symbol. 12gunsound is therefore invalid, but _12gunsound or gunsound12 are fine;

* variable names are case-sensitive, that is, Capitals Matter! The variable Age is different to the variable
age.

19

20

Declaring variables: an example

To declare a variable just means we're telling Monkey we'll be using this particular label to represent some
information.

Here's an example you can type in and run (just click the New File icon in Monk to open a new editor tab). In
this example, we're declaring the variables age, energy and ammo, and immediately assigning values to each
one.

There are two details here that we haven't covered yet: note the use of the 'special' Monkey keyword Local
before each variable name, followed by a colon and the suffix Int at the end of each variable name; however,
don't worry about their meanings at this point:

Function Main ()

Declare age, energy and ammo variables...

Local age:Int = 25
Local energy:Int = 100
Local ammo:Int = 10

Print age
Print energy
Print ammo

End

So, to declare a variable, we use the keyword Local and add :Int to the end of its name. Note that we only use
the Int suffix to initially declare the variable; it's not needed after that.

If you run the above program you'll just see a list of numbers output on the screen, but you should see that
each number matches the values we've specified above. We say that each variable contains a value, e.g. the
variable age contains the value 25. (One way to visualise this is to imagine a small box marked 'age'
containing a piece of paper marked 25.)

Try changing the contents of each variable (e.g. changing the value of age to 26) and checking the resulting
output to confirm that what is printed by the program matches what you've typed in.

Create some variables of your own and add them to this program — remember to use Local and :Int as in the
existing examples — and then add a Print line for each new variable. (Note: at this point you should only
store whole numbers in your variables, or you'll run into problems, for reasons we'll discover soon!)

Print: an aside

We're using the Print command again here, as in the Hello, world! example, but what we're asking it to
display isn't contained in quotes this time. We use quotes to print specific pieces of text, such as “Hello,
world!”, but when there are no quotes it means we're either printing the contents of a variable or a specific
value, eg. Print 100.

4

20

21

Try putting double-quotes before and after the variable names to see the difference, e.g. Print “age”. This

will be interpreted as plain text to be printed, and is nothing to do with the age variable.

Variable types

We're going to look at three basic fypes of variable. There are more, but we'll only need these three for now:

» Integers store whole numbers, such as 1, 50 and 999;
e Floats store fractions, such as 0.5, 33.333 and 1000.95;
» Strings store text, such as “Hello, world!”, “I am a robot” and “Charlie Chaplin”.

Each variable type has an associated suffix. In the previous example, the suffix was Int, which is used to
declare integer variables, that is, variables used to store whole numbers.

In general, to declare any type of variable, you write the keyword Local, the name of the variable, and then
add the relevant suffix.

You can optionally replace each suffix for these basic types with a shortcut symbol, as documented below;
for instance Local myfloat:Float can be declared as Local myfloat# instead.

For the purposes of this guide, we'll use the longer versions for instant readability, but be aware that these
shortcuts exist, as you'll find them in other people's code!

Basic variable types

Integers

Suffix: Int

Shortcut symbol: Y%

Range: -2,147,483,648 to 2,147,483,647

Example values: 0, 100, 5000, -99

Example declarations: Local cats:Int
Local cats%

For our purposes, integers are simply whole numbers. When you create an integer variable, you can assign
any whole number to it, within the range specified above — not many games will need numbers outside of
this range! (However, there are other ways to deal with this if necessary.)

If you don't specify a value for an integer variable when you declare it, Monkey will automatically assign it a

value of zero. You can see this by running the demo below:

Function Main ()
Local bullets:Int

Print bullets

21

22

End

Running this demo will simply print 0 (zero), showing that the variable bullets has been automatically
assigned a default value. Now let's specify an initial value; we do this by adding an equals sign followed by a
whole number:

Function Main ()
Local bullets:Int = 10
Print bullets

End

Roughly translated to natural language, the first line inside the Main function might be read as: “bullets
equals ten.”

Try changing the value, which may be positive (more than zero), negative (less than zero) or even zero itself,
then run the program again. Remember, you can use any number from minus two thousand million all the way
up to two thousand million.

Floats

Suffix: Float

Shortcut symbol: #

Range: see text

Example values: 0.1, 0.75, 2000.075, -100.55

Example declarations: Local weight:Float
Local weight#

Simply put, floats are numbers containing a decimal point — numbers that arent whole, such as a half (0.5), a
quarter (0.25), and so on.

Why “float”?

The word float in this context comes from the expression floating point. You may be surprised to learn that
your computer's processor (it's "brain") only knows how to handle whole numbers — really! Floating point
representation is the technical term used to describe a way of approximately representing fractions within
a system that can only deal with whole numbers.

Your computer's processor has many fast built-in commands, or functions, for dealing with floating point
numbers — adding, subtracting, dividing, and so on — and these built-in functions are what Monkey
makes use of, like most programming languages.

The approximate nature of floating point representation means that floats are not accurate enough for
strict scientific or mathematical usage, but certainly good enough for most games, as the errors are tiny.

(Scientific and advanced mathematics programs ignore the processor's built-in functions and work things
out the long way, making them slower but more accurate. The Windows Calc program is one such
example.)

22

23

Here's an example of creating a floating point variable, or float, to store a fraction:

Function Main ()
Local distance:Float
Print distance

End

Note the use of the suffix Float instead of Int here. As with integers, if you don't assign a value when
declaring a float variable, it'll be assigned a default value of zero.

Here's another demonstration, this time assigning a value to each variable as we declare it:

Function Main ()

Local distance:Float = 5.25
Local time:Float = 10.0

Print distance
Print time

End

Easy enough; floats are declared and assigned the same way as integers, just using the Float suffix instead.

As an aside, here's why floats are needed to store fractions:

Function Main ()
Local distance:Int = 5.25
Print distance

End

If you run this, the output is 5. As a fraction can't be stored in an integer variable like this, the fractional part
is simply chopped off!

Monkey needs to tell the computer's processor what kind of variable it's being asked to work on, so that the
processor can use the relevant built-in functions to deal with it. If we tell the processor via the Int keyword
that we intend to store a whole number, we can't then give it a fraction to work with and expect it to get
things right; if we do, then the processor simply rounds down the value to a whole number that can be
stored as an integer. Change Int to Float in the above example and it'll work correctly.

Which type do I use, then?

As you can see, you have to decide right from the start whether a variable will be an integer or a float.
This may seem limiting, but it turns out that you can almost always decide in advance what you'll need,
just by taking the time to think.

23

24

Take the number of bullets a player has available, for example: are you going to allow the player to shoot
half-bullets? Of course not; if the player starts with 10 bullets and fires a shot, he then has 9 bullets —it's
always a whole number.

But what about a program that deals with cake mixtures, for example? Do you want a whole kilogram
bag of sugar in every mix, or only a part of that amount? If your program uses a variable to represent
sugar in kilograms, you definitely only want part of that amount, so you use a float: one tablespoon of
sugar is about 0.02 kg, for example, so you might use something like Local sugar:Float = 0.02. An integer
sugar variable would only allow you to use whole bags of sugar in each cake!

With that said, though, there's no reason you can't go back and change a variable's type if you find you
need to, but there can be unexpected knock-on effects, so it's best to try and decide in advance.

Floating point range and accuracy

It's hard to state the range of values that a floating point variable can hold, due to the way floating point
representation works. The maximum values (both positive and negative) are greatly reduced depending on
how many figures you place before and after the decimal point; the more figures you place before the decimal
point, the less accurate the numbers after the decimal point become, and vice-versa.

It's a very tricky subject to explore in detail, but in practise, for most game uses, you won't really need to
worry about it, and can assume a positive and negative range in the thousands of millions.

One thing you should be aware of, though, is that floating point numbers, by their very nature, are
inaccurate. Try running this program:

Function Main ()
Local test:Float = 123456789.987654321
Print test

End

The output, when run on the HTMLS5 target, may look slightly different, and may even vary on different web
browsers. (For me, it's 123456789.98765433, demonstrating some rounding at the end.)

When you move on to other target platforms, the results will vary even more; in fact, some platforms won't
even be able to represent simple numbers like 0.1 properly! This isn't an error on Monkey's part, or on the
part of the target platform, but is again due to the way floating point numbers are stored within different
computer systems; they are intentionally inaccurate for speed reasons since computers can only 'understand'
whole numbers.

As a simple analogy, in mathematics, a third (1 divided by 3) is represented in decimal notation as:

24

25
The bold dot above the 3 indicates that the 3 really repeats forever; this would be read as “zero point three
recurring” and it means that there should be an infinite number of 3s on the end!

We're never going to type an infinite number of 3s so we have a symbol to represent this concept. Without
the symbol, we'd have to decide how far we're willing to go in representing a third:

0.3 ' Not accurate!

0.33

0.333

0.3333

©0.333333333333333 ' Still not accurate!

At some point, we decide to give up; and as computers have no concept of infinitely recurring decimal
places, they also have a limit on how accurately they represent decimal numbers.

You'll find that this usually doesn't matter — what difference does it make if your cake contains 0.021 kg of
sugar rather than 0.022? Most things we'll use floats for in games simply don't require perfect accuracy, so
don't worry about this; however, it's good to be aware of it.

Strings

Suffix: String
Shortcut symbol: $
Example values: "Hello world!", "The quick brown fox jumps over the lazy dog", "a"
Example declarations: Local name:String
Local name$

String variables are used to store text; they can store words, individual letters, punctuation symbols and
numbers. (Numbers contained within strings will be treated just as if they were letters; that is, no
mathematical operations will be carried out on them).

We've already used strings; we just haven't stored them in variables so far. The example Print “Hello, world!”
contains a string, “"Hello, world!”, in the same way that Print 10 contains an integer (10) and Print 0.5 contains
a float (0.5).

To store a string in a variable, we do the same as for the other variable types: use Local and the relevant
suffix, :String, to declare it. Here's an example:

Function Main ()

Local name:String = "Billy Bob"
Print name

End

Notice that the string itself is contained within double-quotes. This is important.

25

26

If we didn't assign a string to the name variable here, it would create a default empty string. You can also
specify an empty string manually, simply by writing the two double quotes with nothing in between, as in

"

Local name:String ="".

The quotes aren't actually part of the string. They're only there to tell Monkey where the string starts and
ends within your code.

You can join strings together with the + (plus) symbol, so we can create some more interesting output:

Function Main ()
Local name:String = "Billy Bob"
Print "My name is " + name

End

Here, we've joined a hard-coded string ("My name is ”) with the contents of our name variable.

You could assign the "My name is ” part to a string variable too:

Function Main ()
Local intro:String = "My name is"
Local name:String = "Billy Bob"
Print intro + name

End

If you run, this, the output will be "My name isBilly Bob”, which is not quite right — there's no space between
is and Billy! When joining strings to form sentences, you have to keep an eye out for this.

You could correct this simply by adding a space to the end of the intro string, between the word is and the
closing quote.

Another way to handle it is to use the string joining capabilities of Monkey and insert a hard-coded string,
containing just a space, between intro and name, like so:

Function Main ()

Local intro:String = "My name is"
Local name:String = "Billy Bob"

Print intro + + name

End

Try changing the introductory text and the name. You might want to get adventurous and declare an extra

26

27

string to be printed after name, so it reads, for example, "My name is Billy Bob and I like rainbows." (Use the
+ symbol to add the extra string to the Print line.)

If you want to get more adventurous still, add yet another string and modify the Print line so you can change
what Billy Bob likes.

What if you wanted to print this combination of strings over and over without having to type so much? You
can just combine the strings.

The example below creates an empty string (combined:String) — it's empty because we haven't assigned
anything to it while declaring it — then assigns the combined intro and name strings to it, like so, using the
equals sign:

Function Main ()

Local intro:String = "My name is
Local name:String = "Billy Bob"
Local combined:String

combined = intro + name

Print combined

End

So, this effectively says combined equals intro plus name, or, expanded, combined equals “My name is “ plus
“Billy Bob”. This is ultimately the same as typing combined = “My name is Billy Bob”, so when we then print
the combined string, the output is My name is Billy Bob.

A string's contents can be changed outright by simply assigning it a new value:

Function Main ()

Local intro:String = "Hello, world!"
Print intro

intro = "Goodbye, world!"

Print intro

End

Although intro is initially declared as “Hello, world!”, we then assign it the value “Goodbye, world!”, changing
its contents like so:

intro = “Hello, world!”
intro = “Goodbye, world!”

Hopefully you'll find strings are fairly straightforward. In summary, you just place your text between

double-quotes and assign it to a variable, declared with the String type. You can also join them together with
the + symbol.

27

28

Type conversions

Monkey can do some clever work “behind the scenes” with differing types, converting between types on the
fly as necessary; for instance, when you try to assign a float value to an integer variable, the float is

converted to an integer by chopping off everything after the decimal point, then it's assigned to the integer
variable:

Function Main ()
Local sugar:Int = 1.5
Print sugar

End

This will print 1, as Monkey has assumed you want to convert this float value to an integer during the
assignment.

You can also convert from floats and integers to strings:

Function Main ()
Local flour:Float = 0.1
Local flour_power:String = flour
Print flour_power

End

At the point where we try to assign the float variable flour to the string variable flour_power, the float value is
read by Monkey, turned into a string behind the scenes, then assigned to the flour_power string.

This is known as implicit type conversion; it's implied that you want it to happen. (Assigning a float to a string,
for example, implies you want its value to be treated as text.)

You can also explicitly convert between certain types. For instance, Monkey doesn't allow you to directly
convert the other way, e.g. from a string to an integer or float value, because strings can potentially contain
any old text, while integers and floats can only store numbers; however, if you know you have a string
containing “0.5”, for example, you can explicitly convert it to a number like so:

Function Main ()
Local half:String = “0.5”
Local converted:Float = Float (half)
Print converted

End

28

29

We want to assign the string value “0.5” to the float variable converted, so when we do the assignment, we
state the variable type we want to convert fo (Float in this case), followed by the value to be converted (that's
the half string variable containing the text “0.5”), in brackets.

Explicit conversion like this is also known as casting from one type to another.

(Try adding changing the half string above to “0.5 and some letters” to see what happens, and see what
happens if you use just plain text with no numbers.)

Lastly, here's a type conversion in the middle of a string assignment:

Function Main ()
Local flour:Float = 0.1
Local instruction:String = “Add “ + flour + “ kg of flour”
Print instruction

End

There are a few things going on here:

* we declare a float variable, flour, and assign it a value of 0.1;

* we declare a string variable, instruction, and assign it a “hard-coded” string value, “Add “;

* on the same line, we add the flour variable, but as it's being added to a string, Monkey looks at the
value of flour and converts it into a string, “0.5”, then adds it on to the first part;

* again on the same line, we finally add “ kg of flour” to the string.

The result is that the instruction string contains “Add 0.1 kg of flour”.

Note that converting from one type to another like this does not change the type of the variable being
converted; it only affects how the variable is interpreted by Monkey while being assigned or evaluated. In the
above example, flour is still a float variable containing the numerical value 0.5 at the end.

Literals

Just for reference, when the values of strings and numbers are stated directly in a program, they're called
literals: string literals, integer literals and float literals:

Function Main ()

Local sticks:Int = 3

Local stones:Int = 10

Local sand_buckets:Float = 0.5

Local insult:String = “Hey, get a load of this!”

End

29

30
They are often referred to as hard-coded strings or values, as you have manually specified their contents in the

code, rather than asking the player to enter these values when the program is running, for example, or
reading this information from a file on disk.

Variable assignment

Variable assignment is something we've already done a good number of times now; for example:

intro = “Hello world”
apples =100

We're taking a string variable, intro, and assigning it a value, “Hello world”; or, put another way, we're
assigning the value 100 to the variable apple, as in the second example.

Variable assignment can also include performing a calculation in place of the value to be assigned:
sausages = 100 + 50

Here, we're assigning the calculation 100 + 50 to variable sausages, that is, sausages will now contain the value
150.

When we perform an assignment like this, Monkey first looks at the part after the equals sign, performs any
calculations and/or type conversions, then places the result into the variable before the equals sign:

result = calculation

So, don't think of result = calculation as “result equals calculation”, as this implies that the two are already the
same; instead think of it as “make the result equal to the calculation”.

Here are some examples, with the result variable before the equals sign and the calculation after it:

result = calculation
bullets =100
bananas =1+9

energy =50+25+10

Translated for readability:
make result equal calculation
make bullets equal 100
make bananas equal 1+9

make energy equal 50 + 25 + 10

Here are some practical, though random, examples of variable assignment. Don't run this, as it won't print

30

31

anything! (You could add a few Print statements yourself if you want, though.)

Function Main ()

Local apples:Int
Local oranges:Int

apples = 5
oranges = 10 + 20

Local fruit:Int
fruit = apples + oranges
Local produce:Int = fruit + 100

End

There are a few things here; in order:

* we create two integer variables, apples and oranges; we haven't assigned any values to them, so they
will contain O (zero) by default;

* we then assign the value 5 to apples;

* we assign the result of 10 + 20 (that is, 30), to oranges;

* we create a new variable fruit;

* we assign the calculation apples plus oranges to fruit (total: 35);

* we create a variable produce and assign it the calculation fruit + 100 (total: 135).

You could have declared produce and fruit at the top with the other variables and assigned values to them
later, but sometimes it's just more convenient to do it as you go along. However, it does make for better code
layout if you declare a bunch of variables together before you assign any values to them, as it makes it easier
to locate and edit things when your programs become more complex; but code such as the above is still valid
(and oh-so-handy!).

Constants

Constants work in a similar way to variables in that they have a given type and they store values, but
constants are used to store fixed values; that is, the values of constants cannot be changed while the program is
running.

Constants are declared in much the same way as variables, except that we use the Const keyword to declare
them, rather than Local; also, their values must be set at the same time as they are declared.

Here's what they look like in practise:

Const PISTOL:Int =1

Const MACHINE_GUN:Int = 2

Const LASER_BLASTER:Int = 3

Const THERMONUCLEAR_CANNON:Int = 4

31

32

All three basic types — integer, float and string — are supported:

Const MAX_LIVES:Int = 3
Const ROCKET_ACCELERATION:Float = 2.3
Const GAME_NAME:String = “Revenge of the Exploding Ninjas”

Note also the convention of using ALL_CAPITALS for constant names in Monkey; this allows us to instantly
tell them apart from ordinary variables. This convention is not mandatory, so you can still name constants
any way you like, but it is recommended.

Constants can always be replaced with variables, but they are useful for setting certain values in stone: say
you're working with other people on a project; once the constant LASER_BLASTER has been defined as 3,
any attempt by another programmer to change the value of LASER_BLASTER (elsewhere in the code) will
cause an error when they try to build the project.

If it's important that this value is never changed throughout the project, making it a constant enforces this
design decision. (It also stops you from accidentally trying to change a value you didn't mean to change!)

Here's a real example that shows why declaring a value as a constant may be very important: Monkey
defines the mathematical value pi as a floating point constant in its monkey.math module (the code which
gives Monkey its mathematical capabilities):

Const PI#=3.14159265

Note that PI has been defined here as a constant (remember, the # symbol is a shortcut for :Float).

You may remember from school mathematics classes that pi is commonly used to define the properties of a
circle (“circumference =2 x pi x radius”); it's extremely important that this value doesn't change.

(In reality, pi is an infinitely long number, so you might also read the definition of PI as a clear example of
floating-point inaccuracy.)

Now imagine if PI had been defined by Monkey as a variable, and at some point you decide to create a
variable representing, say, a Power Increase when the player collects a power-up. If you declared that variable
using its initials, as pi (lower case), but accidentally typed it in upper case at some point (remember,
variables are case-sensitive, so pi and PI are not the same variable), you could end up with a situation like
this:

Function Main ()

Local pi:Int ' Power Increase!

PI = 100
power = power + pi

End

If it wasn't a constant, the value of PI would be changed in this example from 3.14159265 — a very important

32

33

value — to 100. (A lesser concern here is that the lower case variable pi has a value of zero at this point,
meaning power would in turn contain an expected value.)

Any attempt to perform mathematical operations involving PI would be spectacularly wrong from here on!
However, because PI is in reality defined as a constant, Monkey will quite rightly complain if you try to run

the above code.

There's another aspect relating to variables and constants that we need to cover later, called variable scope, but
for now, you should generally declare constants 'outside’ of the Main function, like so:

Const TONNE_IN KG:Float = 1000.0

Function Main ()
Print “One tonne equals “ + TONNE_IN_KG + “ kilograms”
End

(A metric tonne is 1000 kilograms; and if you don't do metric, a tonne is... “about a ton”!)

The value of a tonne should clearly never be changed, so although it could easily be defined as a variable
within the Main function, we're declaring it as Const to ensure that it can never be changed.

In summary, you can 'read’ constant values, as in the above example, but you can't 'write' to them (i.e.
change their values).

Right, with that out of the way, let's find out how to do useful things with variables!

Mathematical operations

You can perform mathematical operations, such as addition, multiplication, division, and so on, with
numerical variables:

Function Main ()

Local x:Int
Local y:Int

Print x + y

End

The Print command is clever, in that it can convert most variable types (and the results of operations like
this) into strings and display them; in this case, it will print 12.

Change the plus sign above to a minus and the output will of course be 8, that is, 10 minus 2. Easy enough!

You can do this with hard-coded numbers as well, of course:

Function Main ()

33

34

Print 1 + 2 + 3 - 1

End

The result is 5, as you can no doubt work out on your own. How about assigning all of these values to one
variable before printing the result?

Function Main ()

Local a:Int = 1
Local b:Int = 2
Local c:Int = 3

Local result:Int
result =a+b+c -1
Print result

End

Here we've declared an integer, result, and assigned the combined values of all the other variables to it, then
subtracted 1. The result variable in the end contains the value 5, the sum of all the other variables minus 1.

This means you can perform a calculation once and simply use the same result over and over again. (Add a
few more Print result lines to see what this really means — you can calculate once and then print the same
result as many times as you like, or perform further calculations using this “pre-calculated” result, meaning
you place less of a workload on your computer.)

Mathematical operations available in Monkey include addition, subtraction, multiplication, division,
exponents (numbers raised to the power of another number), and all are represented by special symbols:

Operation Symbol Description
Addition + Plus sign
Subtraction - Minus sign
Multiplication * Asterisk (“star”)
Division / Forward slash
Exponent N Inverted-V symbol

Here are some examples of usage:

Function Main ()

Local energy:Int = 50
Local sum:Int

Local fraction:Float
Local square:Int

Multiplication...

energy = energy * 2
Print energy

34

35

' Addition and subtraction...

sum = 10 + energy - 1
Print sum

' Division...

fraction = 10.0 / 4.0
Print fraction

' Power of 2...

square = 3 ~ 2
Print square

End

Notice the use of a float for the fraction variable here, since we know in advance that's not going to end up as
a whole number.

Hard-coded values in calculations

You may have noticed that the hard-coded numbers in the previous example, 10.0 and 4.0, have been
specified with point-zero (.0) on the end.

Hard-coded values in calculations are treated specially by Monkey. A round number, such as 4, will be
treated as an integer. That means that if we write Local fraction:Float = 10 / 4, we're asking Monkey to
perform the calculation 10 / 4 using two whole numbers, ten and four.

Behind the scenes, Monkey stores the result of any calculation in a sort of temporary variable, then copies
this result into the variable we've specified (which is fraction in this case).

If both of the hard-coded values are integers, Monkey uses an integer for its temporary 'behind-the-
scenes' variable. The real result of ten divided by four is 2.5, but if Monkey is using an integer to store the
temporary result, the value stored here will be 2. Integers can only store whole numbers, so the point-5 is
simply lopped off.

Now, if any of the values used in the calculation is a float, Monkey knows that the result will most likely
be a float, so it instead uses a temporary float variable to store the result.

Therefore, even if only one of the values 10 or 4 is specified as 10.0 or 4.0, the temporary result of the
calculation will be stored correctly as a float (2.5) before being assigned to our fraction variable. (In the
previous example, we've specified both numbers with point-zero just for consistency and easy recognition
as floating point values.)

Modifying variables

So far, we've declared variables and assigned values to them, but variables are called variables for a reason —
their contents can be changed; they're variable!

Consider an integer variable, apples, which contains the value 5, and imagine that we want to change its
value to 6:

Function Main ()

35

36

Local apples:Int = 5
Print apples

apples = 6
Print apples

End

Giving it a new value like this is fine, but we're hard-coding the values here. What if we want to perform a
calculation upon apples (such as adding 1 to its value) and then update apples to store the new value?

Function Main ()

Local apples:Int =5
Print apples

apples = apples + 1
Print apples

End

In this example, we first set apples to 5, but then... what's this?
apples = apples + 1

If you read this as apples equals apples plus 1, it makes no sense, but if you read it in this form:
result = calculation

... it should make more sense. As you know from earlier, the calculation is performed first, then assigned to
the result.

As apples starts out with a value of 5, the calculation is therefore 5 plus 1:
apples=5+1
The result of this calculation is then assigned to apples, with the result that apples now contains the value 6.
So, to increase the value of a variable by 1, we say:
variable = variable + 1
To decrease by 2, we say:
variable = variable - 2

You can of course use any of the mathematical operators; for example the multiplication operator * to
multiply a value by 2:

variable = variable * 2

36

37
(“Make variable equal to variable times two.”)
You can even multiply a variable by itself:
variable = variable * variable

So, if variable starts out as 5 here, Monkey will perform the calculation 5 x 5, then assign the result back to the
variable, like so:

. variable = variable * variable
. variable=5%*5
. variable = 25

A common in-game use might be to give the player a “power-up” providing a new life:
lives = lives + 1
If the player had 3 lives, the result of this calculation would mean that the player now has 4 lives.
Try covering up the left side of the table below so that you can only see the calculation on the right. You

should be able to see the logic as you go down the table: lives + 1 is effectively the same as 3 + 1, which is the
same as 4:

Result = Calculation

lives = lives + 1
4

lives = 3 + 1

lives = 4

After performing the calculation, the result 4 is stored in the lives variable. The calculation lives = lives + 1
therefore increases the value of lives by one.

Here's that power-up in action:

Function Main ()

L}
w

Local lives:Int
Print "Lives: " + lives
' Got power up!

lives = lives + 1

Print "Lives: " + lives

End

Again, as you can perform any mathematical operation, in the case of the player losing a life, you subtract a
value:

37

38

lives = lives — 1

If lives again starts out with a value of 3, the end result of this calculation will see a result of 2 being stored in
the lives variable. You lost a life!

The same simple method can be used in many other practical ways:
* energy boost:
energy = energy + 20
* position change:

x=x+10
y=y-20

* slowing down:

speed = speed — 0.1

Order of mathematical operations

The order in which mathematical operations are carried out can be very important. Try running this
program, for instance:

Function Main ()
Print 10 * 5 + 10 * 2 + 1
End

If you were to work this out from left to right, the answer is 121:

Reading from left to right, step-by-step:

10*5+10*2+1 =50+10*2+1
10*5+10*2+1 =60*2+1
10*5+10*2+1 =120+1
10*5+10*2+1 =121

However, Monkey tells us the result is 71. What's going on? Well, in mathematics, operations are carried out
in a specific order (known as the order of operations).

Unfortunately, the 'correct' order of operations is different depending on where you learn and who teaches
you! Here are just a few variations:

38

39

Orders of operations

BODMAS: Brackets Of Division, Multiplication, Addition, and Subtraction

BODMAS (alternative): Brackets, Ordinals, Division, Multiplication, Addition, and Subtraction
BOMDAS: Brackets Of Multiplication, Division, Addition and Subtraction

BOMDAS (alternative): Brackets, Ordinals, Multiplication, Division, Addition and Subtraction
BIDMAS: Brackets, Indices, Division, Multiplication, Addition and Subtraction

BEDMAS: Brackets, Exponential, Division, Multiplication, Addition and Subtraction

PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition and Subtraction

Which one is 'correct' is the subject of many a heated debate. If you ever accidentally drop one of these into
an online programming or mathematics-based forum, don't be surprised if World War Three breaks out.
(The effect is similar to that of the “Y is not a vowel” discussion.)

However, Monkey uses BODMAS, so mathematical expressions are evaluated in the order B-O-D-M-A-S. If
you can remember that term (“bod-mass”) and that it stands for “Brackets Of Division, Multiplication,
Addition and Subtraction” you'll be fine for most purposes!

Feel free to skip this section and treat it as a reference; just remain aware that the order in which you carry
out mathematical operations can affect the outcome.

If you choose to read on, don't worry if it starts to seem tough going; you can always come back here to
check the rules if you need them!

Order of operations, Monkey-style
BODMAS: Brackets Of Division, Multiplication, Addition, and Subtraction

Taking the basic mathematical operators first, Divisions are evaluated, then Multiplications, then
Additions, then Subtractions.

Any mathematical expression placed inside Brackets is also evaluated according to these rules, with
expressions inside brackets considered before anything else.

So, looking at the previous program again, let's see how Monkey works it out according to BODMAS to end
up with a result of 71:

Function Main ()
Print 10 * 5 + 10 * 2 + 1
End

First, the multiplications are carried out (Multiplication comes before Addition in BODMAS):

10*5+10*2+1

39

40
This is evaluated down to:
50+20+1
As the resulting calculations are all additions, the order is now irrelevant, so we end up with:

70+1=71

BODMAS: The B is for Brackets!

You can force mathematical expressions to be evaluated in a different order via the use of brackets (also
known as parentheses). Here's a calculation performed first of all without any brackets to force the order of
evaluation:

Function Main ()
Print 100 + 2 * 5
End

The multiplication is evaluated first, as you would expect according to BODMAS, then the addition is
carried out, so we get:

Multiplication: 100+2*5
Addition: 100 + 10
Result: 110

Now let's say we want Monkey to evaluate the addition part first:

Function Main ()
Print (100 + 2) * 5
End

Because the B in BODMAS stands for brackets, Monkey looks for brackets before anything else. Therefore
any calculation placed within brackets is performed first. Now we have:

Brackets: (100+2)*5
Multiplication: 102 *5
Result: 510

The BODMAS rules are further applied to any calculations inside brackets:

Function Main ()
Print (5 * 10 + 20) + 50
End

Everything inside the brackets will be evaluated first, using BODMAS, so in this case, inside the brackets, the

40

41
multiplication happens, then the addition. After that, outside the brackets, the outer addition is performed.

Let's see this step-by-step:

Brackets first: (5 *10+20) +50
Multiplication inside brackets: (5*10+20)+50
Addition, still inside brackets: (50 +20) +50
Addition outside brackets: (70) + 50

Result: 120

Nested brackets in BODMAS

Brackets can also be nested; that is, you can place sets of brackets inside other sets of brackets in order to
control the order of evaluation:

Function Main ()
Print (500 * (2 + 1)) - 5

End

The innermost brackets are always evaluated first, which means the expression 2 + 1 is solved first, then the
result is multiplied by 500. Finally, 5 is subtracted from that result.

Brackets can be nested as deeply as you like, but they can start to look pretty confusing, as in this example:

Function Main ()
Print 500 * (2 + (1 * (10 - 6))) - 5

End

If you find you're nesting calculations too deeply like this, you might want to consider performing the
innermost calculations on a previous line for the sake of readability; for instance, the above might become:

Function Main ()
Local inner:Int = 1 * (10 - 6) ' This was (1 * (10 - 6)) but we
' can drop the outer brackets!
Print 500 * (2 + inner) - 5

End

In closing this particular subject, you might find it helpful to use brackets even where they're not needed; for
instance, this example is already in BODMAS order:

41

42

Function Main ()
Print 500 * 2 + 1

End

However, once you know how brackets affect evaluations, you might find it easier to determine at a glance
what's going on by doing something like this, even though it's not technically necessary:

Function Main ()
Print (500 * 2) + 1

End

Arrays

Arrays allow you to create collections of variables. Say you're writing a game where you're a bartender
keeping track of a patron's drink:

Local glass:Float = 1.6 ' Full glass!
glass = 0.5 ' Half full. (Or half empty...)

glass = 0.0 ' Empty glass!

Easy enough to manage; but what if there are two or three customers?

Local glassl:Float = 1.0
Local glass2:Float = 1.0
Local glass3:Float = 1.0
glassl = 0.5

glass2 = 0.25

glass3 = 0.75 ' Slow drinker!
glassl = 0.0

glass2 = 0.0

glass3 = 0.0

Well, that's still manageable, but how about a really busy bar?

Local glassl:Float =
Local glass2:Float =
Local glass3:Float =
Local glass4:Float =
Local glass5:Float =
Local glass6:Float =
Local glass7:Float =
Local glass8:Float =

RRRRRRRER
OO OO0

42

43

Local glass9:Float = 1.0
Local glassl@:Float = 1.0

glassl
glass2
glass3
glass4
glass5
glass6
glass7
glass8
glass9

Random

drinkin' speeds...

85
.25
.35
oD
oD
.75
oD
.45
.65

OO0

glass10 = 0.15

glassl
glass2
glass3
glass4
glass5

glass6 =

glass7

glass8 =

glass9

Wow, they all finished at the same time!

OO0
OO0

glasslo = 0.0

This is getting silly, isn't it? Imagine if you had a hundred people in the bar!

These variables all represent the same thing — how full (or empty) a patron's glass is — so let's stop creating
individual glass variables for each patron:

Local glass:Float [10]

If you cover up the square brackets, you have the simple declaration of a floating-point variable, glass, as in

the first example.

The brackets, and the number within, effectively tell Monkey to create ten such variables in one go. After the
declaration, we can access any of these ten variables by using the name glass and an index number in

brackets:

Create ten glasses...

Local glass:Float [10]

Let's fill glass number 5...

glass [5] = 1.0

At this point, you need to be aware of a very important point: computers, unlike people, start counting from

zero, not from one:

People:

1,2, 3,4,5, etc.

43

44

Computers:
0,1,234,5..etc.

This is very important when accessing arrays: filling the first glass in our example would look like this:

glass [0] = 1.0

Since computers include zero when counting, we count from 0 to 9 to access all ten array entries. Don't
bother running this, since you won't see anything, but look at how we access each entry in the array:

Function Main ()
Local glass:Float [10]

glass [0]
glass [1]
glass [2]
glass [3]
glass [4]
glass [5]
glass [6]
glass [7]
glass [8]
glass [9]

RPRRRRRRRRR
OO OO

End

It's a little unintuitive to us, but... count 'em! We have entries from one to nine, plus that extra zero at the
start, making for ten entries in total.

(It may be easier to grasp the numbering if you focus on the numbers within the square brackets and read
your way down, putting up a new finger for each one.)

So, although you've declared an array of ten items, if you try to do this, you'll cause an error:

glass [10] = 1.0

Try adding this line to the previous example and running it. You should receive an error message something
like this:

Array index out of range

That's because glass [10] would in fact be the eleventh array entry, and our array can only hold ten entries,
which are strictly numbered from 0 to 9.

We'll cover loops later on, so don't worry too much about the For/Next stuff you see here; all you need to
understand is that the index variable is increased from 0 through to 9 within the For/Next block:

44

Function Main ()

Local glass:Float [10]

Local index:Int

For index = @ To 9

glass [index] = 1.0

Next

End

45

' Our array of ten glasses

We'll be increasing this value from @ to 9

Filling each glass!

So, the code inside the For/Next loop is executed ten times, with the index variable starting at zero, then

increasing to one, then two, and so on, up to nine.

This in effect means we're accessing each array entry, from glass [0], glass [1], glass [2], all the way up to glass

[9].

Compare to the length our original ten-glass version, which would look like this:

Function Main ()

Local glassi:
Local glass2:
Local glass3:
Local glass4:
Local glass5:
Local glassé6:
Local glass7:
Local glass8:
Local glass9:
Local glassl@:Float

End

Float =
Float =
Float =
Float =
Float =
Float =
Float =
Float =
Float =

RPRRRRRRRER
OO OO

1.0

And if you still think it's not that much of a saving... imagine we have 100 patrons with glasses to keep

topped up! The code would be ten times as long as this!

Depending on what your array represents, you might easily be handling hundreds or even thousands of

array entries: bullets and explosion particles; citizens or their houses in a city management game, etc.

Changing the array version to deal with 100 glasses means changing the initial array size from 10 to 100, and

bumping up the index value from 9 to 99:

Function Main ()

Local glass:Float [100]

Local index:Int

For index =

Next

End

Ten full glasses!

0 To 99
glass [index]
Print glass [index]

45

46
Why not invent a future “mega-bar” and update this to handle 1000 patrons. (Make sure you fill up all of
their glasses, not just the first 100, or you won't be very popular!)

You might also like to try adding two more For/Next loops, one to set each glass to half-full (0.5) and another
to empty them completely (0.0). Just copy the existing For/Next loop and alter the value from 1.0 as required.

Statements and expressions

Before we continue, let's look at a couple of points of syntax (“sin-tax”), or the rules of a language. In
particular, we need to have a basic understanding of statements and expressions.

Statements

In programming, a statement is roughly equivalent to a sentence, or an instruction. For example, these three
examples are all individual statements:

1) Print “Hello world”
2) If a = 10 Then Print “Hello world”

3) DrawImage player, X, y

We have only briefly seen points 2) and 3) in action, while setting up the firstgame.monkey project at the very
beginning, but they are all effectively complete 'sentences' in Monkey language.

Take point 2), for example, and chop off the ending;:

If a = 10 Then

This isn't a complete sentence — it's missing the required action to be taken should a equal ten. It's an invalid
statement. You can read it out loud and it won't make sense, where the previous example will. A statement
generally sounds like a complete sentence, or command, as in example 1), and can stand by itself.

Statements can also take the form of certain blocks of code, such as If/Endif. We'll be covering If/Endif next,
but it looks something like this:

If a = 10
Print “Hello world”
Print “Something else”
Print “Anything”

Endif

46

47
Everything from If to Endif is considered a statement, but there are also three statements within the If/Endif
statement — the Print lines. (If you're struggling here, come back and have a look at this after reading about

fEndif)

It's quite normal to have statements within statements. Here is the same line printed twice; the underlined
portions of this line are both considered statements:

If a =1 Then Print “True”

If a = 1 Then Print “True”

Expressions

An expression is the part of a program statement that performs a calculation or comparison, which may
involve variables, literals (hard-coded values) or return values from function calls. Take the previous
example:

If a = 1 Then Print “True”

In this statement, the expression part is a = 1. Here it is in a more generic form:

If [EXPRESSION] Then Print “True”

Decisions, decisions

So far, we've really done little more than assign values to variables and print them out. A real program needs
to make decisions! Some examples:

* Has the player been killed too many times?

* Have all of the enemies been killed?

* Has the player clicked on a playing card? Which kind?

» Did the player pick up the Magical Potion of Awesomeness? What happens if he did?

In computer logic, a decision generally involves checking a variable (or some other piece of information) and
taking an action (such as modifying another variable or calling a function) based on its value.

For example:

47

48

If lives = @ Then Print “Game Over”

If you read this out loud you can probably tell how it works even without any explanation — it's almost plain
English:

“If lives equals zero then print Game Over!” (Bill exclaimed.)

In this example, we're looking at the variable lives and taking an action based on its value: If the player has
no lives, then print Game Ouver. Let's see it in practise:

Function Main ()

Local lives:Int = 1

Print "Lives: " + lives
lives = lives - 1 ' Stepped on a grenade! D'oh!
Print "Lives: " + lives

If lives = @ Then Print "Game Over!"

End

Here, lives starts out as one, and is then reduced by one, giving a result of zero. At the If check, the program
determines that lives is indeed zero and prints Game Over.

What happens if lives is not zero? Well, try it: change the initial value of lives to two and run the program. Of

course, nothing is printed. Starting with two lives and taking one away leaves us with one; when the
program comes to check the value of lives and find it's 1, the action following Then is simply ignored.

If/ Then

The If/Then statement takes the form:
If something is true Then take this action

What if you want to take an alternative action should the something in question not be true? You use the Else
keyword:

If something is true Then take this action Else take this action instead

Taking the previous example:

Function Main ()
Local lives:Int = 1

Print "Lives: + lives

lives = lives - 1 ' Stepped on a grenade again! Comedy gold!

48

49

Print "Lives: + lives
If lives = @ Then Print "Game Over!" Else Print "Still Alive!"

End

Run the program and it will print Game Over! as before.

Now change the initial value of lives to two and run it again. Since lives is 1 when the program checks it, the
action following Else is carried out instead.

If[Endif

The If/Then statement is useful for quick tests like this, but it's very limiting if you need to take multiple
actions based on a given result.

First of all, Monkey lets you string together multiple lines by using the semi-colon character ; to separate

them:

Function Main ()
' This...
Print "Hello"; Print "Hello again"; Print "Hello again, again"
' .. 1s the same as this...
Print "Hello"
Print "Hello again"

Print "Hello again, again"

End

We could therefore do something like this in an If/Then test:

If lives = @ Then money = money - 1000; ammo = ©; Print “Game Over!”; Print “Try Again!”

... but it's really too complex to read easily, or to quickly locate a point of interest to edit later on. For
anything more complicated than a single action, we use an If/EndIf block:

Function Main ()
Local lives:Int = ©
If lives = 0@

money = money - 100
ammo = @

Print “Game Over!”
Print “Try Again!”

EndIf

49

50

End

Now it's much easier to see the individual actions being carried out. All of the actions between If and Endif
are carried out if lives equals zero.

Notice that the actions are now enclosed as a block of code, indented for readability, within the If/EndIf
keywords, just like other code blocks such as Function/End, Class/End, etc.

Now change the initial value of lives to one (or any other value) and run it, and you'll notice... that nothing
happens! The whole block of code within the If/Endlf block is being skipped because lives is no longer zero.

Let's add some actions to be taken if the value of lives isn’t zero. Just as we can use the Else keyword to
perform an alternative action in the single-line If/Then statement, we can also use it in the block form:

Function Main ()
Local lives:Int = 3

Local money:Int = 5000
Local ammo:Int = 100

If lives = 0@

money = money - 100
ammo = @

Print "Game Over!"
Print "Try Again!"

Else
money = money + 10 ' Still alive? Have some money!
Print "Still Alive!"
Print "Woo!"

EndIf

End

Before you run this code, try and determine what will be printed on screen. The money and ammo variables
can be safely ignored; they're just here as examples of actions to be taken. Look at the value of lives and trace
through the program to see which block of code will be executed.

Hopefully you got that right! As a further exercise, make a change to the program that would cause the other
block of code to be executed and make sure you understand why that is.

Finally, you can ‘nest' If/Endif tests in order to eliminate unnecessary code execution. Let's say you'd really

like to brag heartily about your forthcoming fruit intake to anyone who will listen, but only if you have two
apples and two oranges together:

50

51

Function Main ()

Local apples:Int =1
Local oranges:Int = 2

If apples = 2
If oranges = 2
Print “Got two apples AND two oranges!”
Endif
Endif

End

Here, because apples does not equal two, the outermost apples test fails and so the program skips to the
matching Endif. (Notice that the indentation immediately shows which Endif matches which If.)

This means that the program doesn't even reach the innermost oranges test; that code block is ignored
completely.

If you change apples to two, you'll see that the innermost code is then executed; the point is that it doesn't
have to be executed if it's not needed; in this scenario, we don't need to check the number of oranges because
we already know we don't have two apples.

An effective optimisation

This is a great way to optimise; that is, to avoid having to execute unnecessary code. Fast-paced arcade games
don't want to be slowed down because they're executing code that doesn't even need to be run.

Say you want to test whether or not a bullet has hit an on-screen enemys; if there are a hundred enemies then
you're going to have to check the position of every bullet against the position of every enemy, potentially a
very hefty calculation that could slow your game to a crawl, particularly on slower devices.

If a bullet has gone outside the screen area, though, you don't need to check for collisions with on-screen
enemies.

Here's the test in 'pseudo-code’, or human-readable code that shows the logic but doesn't actually run:

If [bullet hits alien]
[explode alien]
Endif

If you were testing ten rapid-fire bullets against a hundred aliens, you'd be performing this test a thousand
times. The test itself could potentially involve some quite complicated arithmetic, which takes time, and
multiplying that time by a thousand really could have an impact on how smoothly your game runs.

Why not eliminate as many bullets (or aliens) as possible from the test? If they're off-screen, let's ignore
them! The above pseudo-code is shown here in bold:

51

52

If [bullet on screen]

If [bullet hits alien]
[explode alien]
Endif

Endif

Now the potentially slow, complicated test of 'bullet-hitting-alien' (the part in bold) won't even be executed
if the bullet is off-screen. We've eliminated a block of code that doesn't always need to be run, and that's
good!

Comparisons

Our decisions have so far been based upon whether or not a given condition is true, that is, whether or not
one value equals another:

If height equals 100 then do something

We also need to be able to check for the exactly opposite case in many situations. For example, what if we
want to perform an action when one value isn’t equal to another value?

If height does not equal 100 then do something
How about if one value is less than another?
If height is less than 100 then do something
Or greater than another?
If height is greater than 100 then do something
To make things more complicated, we might even need to know if a value is less than, or equal to, another!
If height is less than 100 or equals 100 then do something
(The same applies to greater than or equal to.)

That's a lot of comparison possibilities! Fortunately, for most comparisons, there are only three symbols you
need to remember:

Symbol Meaning
= Equals
< Less than

52

53

> Greater than

Let's see them in action:

Function Main ()

Local a:Int = 1
Local b:Int = 2
' Comparisons...

If a = b Then Print "a equals b!"
If a < b Then Print "a is less than b!"
If a > b Then Print "a is greater than b!"

End

Run the program, then play with the values of 2 and b at the top (e.g. swap their values around) to see the
different results. Check the code to see which line has been executed, and therefore which comparison was
true, and make sure you understand why.

That covers equals, less than and greater than, but how about doesn’t equal? Well, we've already said you only
need to know three symbols. In Monkey, you use a combination of the less than and greater than symbols
together, <>, to mean not equal:

Function Main ()

1
2

Local a:Int
Local b:Int

If a = b Then Print "a equals b!"
If a <> b Then Print "a does not equal b!"

End
So, you can read the above If tests, in order, as:
“If a equals b”
.. and...
“If a does not equal b”
Try making the initial values the same to see the difference.

Finally, you can test for the case where a value is less than, or equal to, another value, by combining the less
than and equals symbols, like so:

Function Main ()

25
50

Local dave:Int
Local bill:Int

53

54

If dave <= bill Then Print "Dave is younger than, or the same age as, Bill"
If dave >= bill Then Print "Dave is older than, or the same age as, Bill"

If dave = bill Then Print "Dave is the same age as Bill"

End
(Note that the same method applies to the greater than or equal to case.)
Run the program, then try playing with Dave and Bill's ages. You might have to think a little about the
output you're seeing: if the ages are the same, you'll see three lines of output! (They're all technically true if

you think about it.)

In summary, the valid combinations of these symbols are:

Symbol Meaning

< Does not equal

<= Less than or equal to

>= Greater than or equal to

Multiple comparisons

Lastly, you can run a block of code based on the outcome of multiple comparisons:

If bullets > @ Or laser_bolts > @
Print “Still got ammo!”
Endif

Notice the Or keyword between the two tests, bullets > @ and laser_bolts > e. If either of these two tests is
true, the code in-between will be executed.

For readability, it can be easier to place each test within brackets. This is the same code:

If (bullets > @) Or (laser_bolts > @)
Print “Still got ammo!”
Endif

Here's that code in runnable form:

Function Main ()

Local bullets:Int = 10
Local laser_bolts:Int = 100

If (bullets > @) Or (laser_bolts > @)
Print “Still got ammo!”
Endif

End

54

55

Try changing the values of bullets and laser_bolts so that one or both of them are zero.

You can also execute a block of code when both tests are true:

Function Main ()

Local bullets:Int = 10
Local laser_bolts:Int = 100

If (bullets > ©) And (laser_bolts > @)

Print “Still got both kinds of ammo!”
Else

Print “Still got one kind of ammo anyway...”
Endif

End

If you set either bullets or laser_bolts to zero and re-run the program, the If test will be false, so the Else block
of code will be executed. Both values must be greater than zero for this test to be true.

Function Main ()

Local fuel:Int = 100
Local wheels:Int = 4

Repeat
fuel = fuel - 1
Print “Fuel left: “ + fuel
If fuel = © Or wheels = 0
Print “Ran out of fuel, or wheels fell off! Game Over!”
Exit
Endif
Forever

End

Boolean evaluation
These comparisons are all 'evaluated' by Monkey as True or False; that is, the result of the test will either turn
out to be true, or it will turn out to be false. This 'true or false' evaluation of expressions is known as Boolean

logic.

The code following the comparison will only be executed when the result is true:

Local a:Int = 1

If a = 1 Then Print “True”

55

56

In this example, because a does equal one, the comparison is true and the code after the test is executed.
Change the value of a to anything else and the comparison is false, so nothing is printed.

Too many decisions!

After our necessary little detour into the various comparisons you can make, let's get back to basic decision
making.

If/Endif is fine for simple one-way-or-the-other decisions, but what if you want to test for a number of different
results and perform actions for each separate outcome?

Select/Case

In Monkey, we use the Select keyword to choose a value and the Case keyword to take an action depending
on that value. Sounds complicated, but it's fairly simple; let's assume that bananas is an integer variable
which is holding a value of 2:

Select bananas

Case 1
Print “You have one banana!”

Case 2
Print “You have two bananas!”

Case 3
Print “You have three bananas!”

End
Translating this to English, we're asking Monkey to select the appropriate case for the value of bananas and
run the relevant code. In the case where bananas equals 1, it will run the code directly after Case 1; if bananas
equals 2, it will run the code after Case 2; and so on.

Note the indentation to show that this is a separate block of code and to keep the separate cases clear.

In the case where the value is 2 (as it is here), the program jumps straight to Case 2 and executes the block of
code that prints You have two bananas!

Importantly, after executing the code for the given case, it then leaves the entire Select/End block and

56

57

continues onwards, ignoring all the other Case statements. Only the code after the relevant Case statement is
executed.

Run this example and then change the value of bananas to 2, then to 3:

Function Main ()
Local bananas:Int = 1

Select bananas

Case 1

Print "You have one banana!"

Print "Nobody needs more than one banana!"
Case 2

Print "You have two bananas!"

Print "Two-handed banana bandit!"
Case 3

Print "You have three bananas!"
Print "Look, that's really too many bananas..."

End
Print "OK, that's enough banana advice for now."

End

As you can see, the program jumps to the final Print statement, outside of the Select/End block, regardless of
which Case block is executed, ignoring any previous or following Case blocks.

A little exercise: add a case for the value of bananas being zero. Print something funny relating to an
unfortunate lack of bananas.

Now try changing bananas to a value not covered by any of the cases. Run the program, and as you might
have guessed, it skips the entire Select block — since none of the cases matches — and just prints the banana
advice line.

What if we wanted to carry out an action in this situation where none of the Case values matches bananas?
Luckily, Monkey provides the Default keyword for just this eventuality:

Function Main ()
Local bananas:Int = 100

Select bananas

Case 0
Print "It is a lonely individual who has no bananas."
Print "I cast thee out."
Case 1
Print "You have one banana!"
Print "Nobody needs more than one banana!"
Case 2

Print "You have two bananas!"
Print "Two-handed banana bandit!"

57

58

Case 3
Print "You have three bananas!"
Print "Look, that's really too many bananas..."
Default
Print "Why do you have so many bananas?"
Print "I could only dream of having so many bananas. Sigh..."
End

Print "OK, that's enough banana advice for now."

End

There's no Case 100, so the program skips to the Default code block and prints an appropriate message.
Default is therefore a sort of “catch-all” Case.

(You can add a case to this program specifically for the value 100 if you like — the Case values don't have to
be sequential numbers, or in any kind of order.)

Loops

The programs we've written so far are very simple: they carry out a few simple operations involving
variables, perhaps perform a few tests on them and very quickly come to an end.

Most real-world programs operate in a loop, repeating the same block (or blocks) of code over and over, like
this:

Do this stuff...
Print “Hello”
Over and over.

Such a program would simply keep printing out the word Hello until you manually end the program. Here's
what a real-world Monkey version would look like, but please don’t run it:

' WARNING: Do NOT run this program!
Function Main ()
Repeat
Print "Hello"

Forever

End

This program would cause the Monk IDE to freeze, for reasons that will be covered later.

Repeat/Forever

58

59

In a Repeat/Forever loop like this, any code between Repeat and Forever is, simply put, repeated... forever! This
is known as an infinite loop. In most cases you need a way to be able to break out of such a loop, which will
otherwise run until the end of time (or at least until you turn off your computer).

One way to “escape” from a loop like this is with the Exit keyword, called when a specified condition is met:

Function Main ()

Local counter:Int

Repeat
counter = counter + 1
Print counter
If counter = 100 Then Exit
Forever

Print "Exited from loop!"

End

This loop will keep increasing the value of counter, check whether or not counter equals 100, then exit the
loop if it does. You'll notice that program flow continues after the Forever line, which is the end of the loop
block, telling us it's exited from the loop.

Repeat/Until

Another way to exit from a loop is by using a Repeat/Until block, which works in exactly the same way, but
effectively moves the If check to the Until line, becoming a core part of the loop rather than a check
somewhere in the middle:

Function Main ()
Local counter:Int
Repeat

counter = counter + 1
Print counter

Until counter = 100
Print "Exited from loop!"

End

If you just read out loud the Repeat and Until lines from this program, you should be able to see that this loop
will, quote, “repeat until counter equals 100”. It starts out with a value of zero, then on each iteration of the
loop, counter is increased by one. When counter equals 100, the program exits the loop. (To iterate through a
loop means to repeat it with a small change each time, such as increasing or decreasing a variable.)

A similar loop construct in Monkey is the While/Wend loop:

59

60

Function Main ()
Local counter:Int
While counter < 10

counter = counter + 1
Print counter

Wend
Print "Exited from loop!"

End

This also repeats a section of code, but places the test right at the start of the loop, unlike Repeat/Until, which
places it at the end of the loop.

The difference is subtle but can have a significant effect; in a Repeat/Until loop, the code in-between will
always be run at least once, then the test will be carried out to determine whether the loop should repeat.

On the other hand, in a While loop, if the While test isn't true, the code in-between won't be run and the loop
will exit; this means that if the While test isn't true when you first enter the While/Wend loop, it will do
nothing at all.

In the above code example, we're effectively saying “As long as counter is smaller than ten, execute this code
and then iterate again”.

The Game Loop

Games almost always run in loops: if you think of a game like Namco's famous Pacman, the program behind
the scenes is constantly checking the player's position and comparing it with the positions of the ghosts and
the pills, in order to determine would should happen — usually a score increase or instant death!

A game loop like this will typically test for player input from the keyboard, mouse or other controller; update
the player's position on screen based on this input; update enemy positions on screen; check for collisions
between the player (or the player's bullets) and the enemies; and draw everything on screen, many times per
second. (Most arcade-style games aim to do all this, and draw the results, 60 times per second.)

You may recall a brief discussion covering the OnUpdate and OnRender 'methods' from the very start of this
tutorial (but don't worry if not; we'll come to this later anyway). These two methods generally perform the
following functions:

* OnUpdate:

Runs the code, defined by you, that takes player input, updates the player’s
position, updates enemy positions, checks for collisions, and so on.

¢ OnRender:

60

61

Runs the code defined by you that draws everything on screen.

Monkey hides its low-level workings from you, but behind the scenes Monkey performs something like this
(very simplified) loop:

Repeat

OnUpdate ' Your OnUpdate code
OnRender ' Your OnRender code

Forever

As you can see, this is an infinite loop that repeats the update code and the drawing code over and over.
That's really how most games operate while you're playing. (The complexity comes in the actual game
update and drawing code, of course.)

We'll come back to game loops later on, but first we need to know how to bundle frequently-used lines of
code into functions that we can treat as single commands. This will also help us greatly when it comes to
learning methods.

A very simple game

Time for a break! We've now covered enough to create a very simple game, so let's put some of this theory
together.

You don't need to understand all of this right now; it's just a demonstration of what a simple game needs in
order to run and some real-world usage. This will be possibly the dullest game you've ever seen — a
rectangle moved via the keyboard — but will show you how a real game works and provide a basis for you to
experiment with.

Monkey games are written using the mojo module, which, as we learned earlier, is a set of commands that let
us load and display graphics, play sounds, process mouse/keyboard input, and so on.

Before all else, we need to tell Monkey we'll be using mojo, via the Import keyword:

Import mojo

We need to create an App class, which we'll cover in detail later, but for now we only need to know that it's
necessary for the operation of our program:

Class Game Extends App

Method OnCreate ()
End

Method OnUpdate ()
End

61

62

Method OnRender ()
End

End

And we need a Main function, which creates a new game for us:

Function Main ()
New Game
End

Again, you don't need to know what's going on at this point, but you might notice that Game is the name of
the class we created, and Main makes reference to the Game class.

This is the basic structure of any Monkey game, and, put together, it looks like this:

Basic Monkey game structure:
Import mojo
Class Game Extends App

Method OnCreate ()
End

Method OnUpdate ()
End

Method OnRender ()
End

End
Function Main ()

New Game
End

In summary, we have:

* the mojo import;
* the App class;
* the Main function launching the game.

When the Main function creates the game, the program flow is handled behind the scenes by the App class
and effectively works something like this:

OnCreate ' Your OnCreate code, called once
Repeat
OnUpdate ' Your OnUpdate code, called over and over
OnRender ' Your OnRender code, called over and over
Forever

62

63

If you run the “Basic Monkey game structure” example, nothing interesting will happen. That's because we
have to fill in the OnCreate, OnUpdate and OnRender methods with actual code!

Let's look at each of these methods and what they're used for:

* OnCreate: startup code, called once;

* Onlpdate: code called while the program is running; we typically read and store the player's
keyboard, mouse or other input; apply any movements to the player; check for collisions between
player and enemies, or between enemies and bullets, and so on;

* OnRender: we draw the result of these calculations.

Game loops typically update and draw the on-screen action many times per second; in general, arcade
games aim for 60 frames per second. Just as a movie or cartoon is a series of still images played quickly, so is
a game.

One thing we must do for any Monkey game to work is set the update rate; we do this in the OnCreate
method, using the mojo module's SetUpdateRate command:

Method OnCreate ()
SetUpdateRate 60
End

(For a small game, you might well load in images and sounds here too.)

We're going to fill in the OnlUpdate method next, but we're going to need a way to track the player's position.
We need some fields for this purpose, which are just a special kind of variable related to classes, and they're
used in much the same way as the variables you already know. These will go just inside the class, here:

Class Game Extends App

Field x:Int
Field y:Int

Method OnCreate ()
End

2D positioning explained

Two-dimensional computer games refer to the on-screen position of gameplay elements (the player, the
bullets, the aliens) using x and y offsets.

You may know that a computer display is a grid formed from thousands of tiny dots called pixels. A
Monkey game, by default, will create a display that's 640 pixels wide and 480 pixels high, a common PC
monitor resolution; this effectively divides the game's display area into a 640 by 480 pixel grid. (We refer
to this display size as “640 x 480".)

To specify a position on the display, we state the number of pixels across and the number of pixels down.
The top-left of the display is considered to be zero pixels across the screen and zero pixels down, which
we state as co-ordinates (0, 0). The first number in such a pair is usually referred to as the x-position and

63

64

the second number as the y-position (x, y).

Pixel positions:

x is across, y is down

So the middle position of a 640 x 480 display is (320, 240); that is, x =320 and y = 240.

This positioning system is what our x and y fields refer to, in reference to the player's position on the
screen. We'll change the values of x and y to appear to move the player around the screen.

With that covered, we can define the OnUpdate method!

Method OnUpdate ()

' Check the cursor keys (arrows) and adjust the x and y
' positions according to which keys are being held:

If KeyDown (KEY_LEFT) Then x = x - 2
If KeyDown (KEY_RIGHT) Then x = x + 2

If KeyDown (KEY_UP) Then y

=y -2
If KeyDown (KEY_DOWN) Then y =

y + 2

End

That'll do for now! Let's fill in OnRender and see what this baby can do!

Method OnRender ()
' Cls clears the screen:

Cls
' DrawRect draws a rectangle at our x and y co-ordinates, which
were calculated in the OnUpdate method. The rectangle will

' be 8 pixels wide and 8 pixels high:

DrawRect x, y, 8, 8

End

So, putting it all together in its final runnable form, we get:

Basic Monkey game structure:
Import mojo
Class Game Extends App

Field x:Int
Field y:Int

Method OnCreate ()
SetUpdateRate 60

64

End

Method OnUpdate ()

' Check the cursor keys (arrows) and adjust the x and y
positions according to which keys are being held:

If KeyDown (KEY_LEFT) Then x = x - 4
If KeyDown (KEY_RIGHT) Then x = x + 4

If KeyDown (KEY_UP) Then y

= 4
If KeyDown (KEY_DOWN) Then y

y

End
Method OnRender ()
' Cls clears the screen:

Cls o, 0, ©

DrawRect x, y, 8, 8

End

End

Function Main ()
New Game

y +4

DrawRect draws a rectangle at our x and y co-ordinates, which
were calculated in the OnUpdate method. The rectangle will
' be 8 pixels wide and 8 pixels high:

65

End

Monkey calls OnCreate, which sets the update rate (60 frames per second), then calls OnlUpdate and OnRender
in an infinitely-repeating loop.

Technically, the program calls OnUpdate 60 times per second, as per the update rate we set (unless your computer
can’t keep up), and calls OnRender “whenever it can”, which usually means “about the same number of times”. For
simplicity’s sake, though, we'll just assume theyre both called 60 times per second!

Build and run this game, press the cursor keys to move the rectangle and marvel at its power and simplicity!
All Monkey games using mojo are built from a similar foundation to this.

We'll cover the details of classes and mojo in more depth later, but here are some changes you can make to
the program. First of all, let's set x and y to the middle of the 640 x 480 display on startup, by modifying

OnCreate with the lines in bold here:

Method OnCreate ()

X
y

320
240

SetUpdateRate 60

End

Run this and the player will start in the middle of the screen.

65

66

You might have noticed that it's possible to move outside of the screen area — try it if not — so let's force the x
and y positions to remain within the display. Modify OnlUpdate by adding the bold lines below:

Method OnUpdate ()

' Check the cursor keys (arrows) and adjust the x and y
' positions according to which keys are being held:

If KeyDown (KEY_LEFT) Then x = x - 2
If KeyDown (KEY_RIGHT) Then x = x + 2
If KeyDown (KEY_UP) Theny =y - 2
If KeyDown (KEY_DOWN) Theny =y + 2

' Don't let x or y go outside the 640 x 480 display area:

If x < @ Then x = ©
If x > 639 Then x = 639

Ify<0Theny =0
If y > 479 Then y = 479

End

You'll now find you can't move outside the display area any more. We've done this by limiting the values of
the x and y fields using less than and greater than checks.

Looking at x, we check to see if it's less than zero (zero is the left edge of the screen); if it is less than zero, we
force it to zero.

We then check to see if it's greater than 639: the display is 640 pixels wide, but the numbering starts from
zero, so the rightmost pixel is in fact 639 pixels across. If x is greater than 639, we force it back to 639.

(We don't see the player jump' awkwardly when we force these values, as it all happens before we get to
OnRender!)

The same conditions are then applied to the value of y, so it's similarly limited to the display area.

Modifying the game
Here are some tweaks you can apply to this code:

* lower the update rate to see how it slows down the movement of the whole game. Put it back to 60
when you're done;

* change the numbers after Cls. They're currently 0, 0, 0, which are red, green and blue colour values
respectively; we can mix these values together to form any colour imaginable.

Using zero for all three means there is no red, no green and no blue in the colour, which is why we
have a black screen! You can give each number a value from 0 to 255. For example, Cls 255, 0, 0 will
give you a bright red screen, Cls 0, 255, 0 a green screen and CIs 0, 0, 255 a blue screen; Cls 255, 255,
255 is pure white.

66

67

Mix and match all three values as you see fit: Cls 96, 128, 255 gives a pale blue, for example.

* change the movement speed; it's currently 2; try making it 1 for all movement directions. Any ideas
as to how you might change the speed to a non-whole number; 2.5, for example? Hint: look at the
type of the x and y fields!

* invert the up/down controls; you can either change the keycodes used in OnlUpdate (KEY_UP and
KEY_DOWN) or the plus/minus signs used to change the value of y.

If you're feeling adventurous, refer to the Monkey docs (in Monk, go the the Docs tab, click Module
Reference, then mojo.input), you'll find a list of 'key codes'. You can change the key codes used in
OnUpdate and thereby change which keys the game uses.

The key code in the excerpt below is KEY_LEFT, so that's the part you would replace with a different
key code chosen from the docs:

If KeyDown (KEY_LEFT) ...

Play with the game code until you either get bored or break it beyond repair!

For now, it's time to get back to the theory, and learn about...

Functions

Functions, at their simplest, make it easy to bundle frequently-used lines of code into a single 'command".
Take this example program:

Function Main ()
Print "Hello!"
Print "Hello again!"
Print "Hello, for the last time!"

End

Let's say you wanted to execute those three Print lines many times throughout your program — an unlikely
scenario, but nice and simple to grasp!

You could type out (or copy/paste) those lines each time you need them:

Function Main ()
Local a:Int = 100
If a = 100
Print "Hello!"

Print "Hello again!"
Print "Hello, for the last time!"

67

68

Endif
If a = 101

Print "Hello!"

Print "Hello again!"

Print "Hello, for the last time!"
Endif
If a = 102

Print "Hello!"

Print "Hello again!"

Print "Hello, for the last time!"
Endif

End

Pretty tedious — and messy! How about this?

Function Main ()

Local a:Int = 100

If a = 100 Then PrintStuff ()
If a = 101 Then PrintStuff ()
If a = 102 Then PrintStuff ()

End
Function PrintStuff ()
Print "Hello!"
Print "Hello again!"

Print "Hello, for the last time!"

End

(Note that we can now use the single-line If/Then since we don't need to execute multiple lines each time. It's
much neater and the repeated code has been moved out of the way, into its own function.)

Notice that I've placed the PrintStuff function below the Main function in this example, but there's no reason
it couldn't be placed above it instead. (Cut and paste it if you want to try.)

No matter what order you declare your functions in, the Main function will always be called first; the other
functions are only called when you decide they should be called.

The program won't just run through each function in turn; at the end of the Main function, this program will
simply exit; PrintStuff is only called at the point where we ask for it to be called.

We know that a is 100 in this example, so PrintStuff will be called when this value is checked. The program
flow will “jump into” the PrintStuff function and execute the code within.

At the end of the PrintStuff function, program flow returns back to the Main function, to the statement just
after we called PrintStuff. Therefore, after PrintStuff has run, the next line in the above excerpt will be If a =
101.

As the repeated code has been placed into the PrintStuff function, each time we want to run those three lines

68

69
of code, instead of typing them out in full, we just type PrintStuff ().
As with variables, the name you give to a particular function is up to you, and the same naming rules apply,
so PrintStuff could just as easily be called SayHello or Squirrels. As long as that's the name you use when you
call the function, it doesn't matter, but you should make function names as descriptive as possible, while still

being easy to type.

(The Monkey convention is to type function names with upper-case initials for each “word”, as in
FireMachineGun, FireCannon, CheckPosition, etc, though it's not mandatory.)

To declare a simple function, you type the keyword Function, its name (chosen by you) and add opening and
closing brackets; you then terminate it with a closing End, like so:

Function MyFunction ()

End

The code to be executed by your function is then placed in-between (and indented), just as you do with the
Main function:

Function MyFunction ()
Print “Hello”

End

Functions can often be thought of as miniature standalone programs to be executed whenever you want (this
one prints “Hello”), and, if written well, can be copied and pasted to be re-used in future projects.

Function parameters

Functions can take parameters, that is, values that modify how they work. Let's say that instead of the word
“Hello” each time you call PrintStuff, you want it to print “Goodbye” (or, indeed, anything else) in certain
situations. We can pass a string value as a parameter, like this:

Function PrintStuff (message:String)
Print message
End

This code won't run (there's no Main function to call it from), but let's take a look at its construction.

We've added a string-type parameter, message, in between the brackets. (They're more correctly called
parentheses, but most people call them brackets, so we will too — common usage prevails!)

A parameter is effectively a variable that only the code within the function can access. The point of a parameter,

69

70

though, is that it can accept a value which can be different each time the function is called:

Function PrintStuff (message:String)
Print message

End

Function Main ()

PrintStuff ("Hello")
End

I've placed the PrintStuff function at the top of the code here, so you can see the function definition to start
with, and the call later on, inside Main.

Remember, the program starts at Main, where it:
* jumps to PrintStuff;
* runs the Print message line, using the “Hello” string passed as a parameter;

e returns to Main, where it runs out of code and exits.

(Always look for the Main function first when reading a Monkey program; you can then trace its flow from
there.)

Run the program, then change the value being passed to PrintStuff, i.e. change the word Hello to something
else.

Let's see the original example with modifiable PrintStuff output:

Function Main ()

Local a:Int = 100

If a = 100 Then PrintStuff ("Hello")
If a = 101 Then PrintStuff ("Hello")
If a = 102 Then PrintStuff ("Goodbye")

End

Function PrintStuff (message:String)
Print message
Print message + "!"
Print message + " again!"

Print message + ", for the last time!"

End

If you change the original value of a4 to 102, the messages displayed by PrintStuff will change. You can
therefore see that it's possible to change the effect of a function call by passing different values.

Now let's pass an integer value to a function. We'll use that value to print different messages depending on
what value is passed:

70

71

Function DoStuff (action:Int)

Select action

Case 1

Print "Gone to the shops."
Case 2

Print "Gone to a party. Woo."
Case 3

Print "Gone hunt'n'. (H'yuk!)"
Default

Print "Don't know what that action is!"
End
End
Function Main ()
DoStuff (1)

End

So, we pass a value of 1 when calling the DoStuff function, and then, inside the DoStuff function, the action
parameter receives that value. We can therefore treat action as a variable containing the value 1.

The Select test inside DoStuff looks at the value of action and prints the appropriate message.

Variable scope: a brief aside

Note that action (and any other variables that might be created within the DoStuff function) can only be
accessed from within the DoStuff function it belongs to; if you try accessing it from Main you'll receive an
error; try it: add a Print action line to the Main function. This is an example of variable scope, which we'll

cover very shortly.

Try changing the value passed to DoStuff and checking the output message to understand how it works.

Here's how such a function might be used in a real game:

Function Main ()
Fire (1)

End

Function Fire (shot_type:Int)
Select shot_type

Case 1
Print "Machine gun fired!"

Case 2
Print "Rocket fired!"

Case 3
Print "Thermonuclear missile fired!"

71

72

Default

w o

Print "Phwup... Unknown shot type!
End

End

Rather than printing simple text, you might use each Case to select a different image to be drawn when the
player fires a shot, as well as to decide how much damage will be inflicted upon the unlucky recipient.

In this example, the program simply calls Fire once and then exits, but in a real game loop you might call Fire
every time the player presses the Space key, for example.

Multiple parameters

You can also pass multiple parameters to functions. Here's an example where we pass two values, one for
apples and one for oranges:

Function Main ()
PrintFruit (2, 4)
End
Function PrintFruit (apples:Int, oranges:Int)

Print "Apples: " + apples
Print "Oranges: " + oranges

Or, to put it another way...

Print "You have " + apples + " apples and " + oranges + " oranges!"

End

The parameters can be of mixed types, such as one integer and one float, and you can use as many
parameters as you like, though it's best to keep things as minimal as possible.

The parameters are interpreted by the function according to the order in which they are passed: in this case,
the first value passed, 2, will be received as the apples parameter of PrintFruit, and the second value, 4, will

be received as oranges.

You must pass the correct number of parameters required by a function. However, it is possible for a
function to have optional parameters, which can be skipped...

Optional parameters

You can specify default values for some or all parameters in a function, which means that those parameters
can be omitted when calling the function, i.e. they become optional. Here's a simple example:

72

73

Function Main ()
CountBullets ()

End

Function CountBullets (ammo:Int = 100)
Print "Bullets: " + ammo

End

Run this program, and notice that the output from CountBullets tells us we have 100 bullets, even though we
passed no parameters when calling it from Main. The default value is defined in the ammo parameter of
CountBullets, so if our function has a default parameter, ammo, and we choose to pass no value for ammo, a
default value of 100 will be used.
Try passing a specific value in the CountBullets call, within Main, to see the difference, e.g. CountBullets (99).
You can have multiple parameters with optional values, but you should note that if you mix normal
‘required' parameters with optional parameters, the optional parameters must come last in the function
definition.
What does this mean? Well, this is not valid:

Function CountBullets (ammo:Int = 100, gun_type:Int)
... because the optional parameter comes first, but this is valid:

Function CountBullets (gun_type:Int , ammo:Int = 100)
Note that the parameters are the same, just defined in a different order. Any parameters with default values
must be defined after those that require values to be passed. Hence, gun_type in this instance must come

before ammo.

Here's a more complicated version; the meanings don't matter here, but notice how the multiple parameters
that require you to pass values are defined first, and those with optional/default values are defined last:

Function CountBullets (gun_type:Int , gun_ready:Int, ammo:Int = 100, shot_speed:Int = 10)
In this case, all of these calls are valid:

CountBullets (1, 1)

CountBullets (1, 1, 99)

CountBullets (1, 1, 99, 0)

As a minimum, in this case you must pass at least the first two parameters since they have no default values.

Functions, like all of the examples so far, which simply execute a block of code, are often called commands:
we tell them to go and do something, and they do it.

73

74

They can be so much more useful, though, when they go off and do something, then tell us the result of what
they did!

Returning values

This is where functions become really powerful.

You can perform calculations within a function, then return the result of those calculations to the point in the
code from where you called the function.

What does this mean? Well, let's take a really simple example: how old will someone be in 10 years' time?
What we need to do, of course, is take the player's current age and add 10:

Function Main ()
Local current_age:Int = 20
PrintAgeInTenYears (current_age)
End
Function PrintAgeInTenYears (age:Int)

age = age + 10
Print age

End

That's easy enough; the PrintAgelnTenYears function takes the value you pass to it, adds 10 and prints the
result.

But what if you want to do something else with that result instead of just printing it right away? You really
just want the function to carry out the calculation — adding 10 to the value passed — and then tell you the
result:

Function Main ()
Local current_age:Int = 20
Local result:Int = GetAgeInTenYears (current_age)
Print result
End
Function GetAgeInTenYears:Int (age:Int)
age = age + 10
Return age

End

74

75

The point here is that the result variable in Main will ultimately contain the value returned by the
GetAgelnTenYears function.

Let's look at this in detail: in the Main function we create an Int variable, current_age, containing the player's
current age, 20.

We're looking for the player's current age, plus ten years, so we've created a new variable called result to
store it in. (You could call this variable anything you want, of course.)

As you already know, you can assign a value to a variable as soon as you create it (e.g. Local result:Int = 5),
and that's really all we're doing here. The only difference is that instead of assigning a hard-coded value to
result, or the contents of an existing variable (as in Local result:Int = ammo), we're assigning a value obtained

from a function call (Local result:Int = GetAgelnTenYears ()).

Let's take a closer look at the GetAgelnTenYears function; in fact, let's go line-by-line:

Function GetAgeInTenYears:Int (age:Int)
age = age + 10
Return age

End

The first line looks like the previous function examples, except we now have an Int suffix after the function
name. This function is intended to perform a calculation and return a result, and just as a variable holds a
value of a given type — integer, float, string, and so on — a function can only return a result of a given type.

So, in this case, the GetAgelnTenYears function returns an integer value — this is what the Inf suffix after the
function name tells us.

The age = age + 10 line simply takes the value passed to the function via the age parameter (we're passing
current_age) and adds ten to it.

The final line inside the function block, Return age, is the key: it returns the value of age to the line that called
the function. Go back and look at the function call in Main:

Local result:Int = GetAgeInTenYears (current_age)

The result variable here will receive the value that was calculated within GetAgelnTenYears.

Variable scope

All this time we've been declaring variables using the Local keyword, but why Local?

Declaring a variable using Local means that it is local to the function it's declared in — it belongs to that
function, just as you might declare that you 'belong 'to a particular area; you are local to that town, block,

75

76
street or whatever.

When we declare a variable as Local within a function, we are stating that the variable can only be used within
that function. Try this:

Function Example ()
Local something:Int = 100
Print something

End

Function Main ()
Example ()
Print something
End

When you run this, Monkey will complain that the variable something hasn't been declared. (“Identifier
'something' not found.”)

We can see that it has been declared, but it is local to the Example function. Main doesn't even know it exists!
A function cannot 'see' another function's local variables.

We could declare another something variable within Main, but it's important to understand that it would be
completely unrelated to the something variable in Example:

Function Example ()
Local something:Int = 100
Print something

End

Function Main ()
Local something:Int
Example ()
Print something

End

This will print 100 followed by 0; can you see why?

The something variable declared inside Main contains 0 by default, and has nothing to do with the something
variable inside Example, which contains 100.

This is called variable scope, which defines which parts of the program can access a given variable . A variable
with Local scope can only be accessed from the function in which it is declared.

What if you do want a variable to be accessible to all functions?

Global variables

To allow a variable to be accessed from any part of a program, we declare it outside of all functions, using
the Global keyword instead of Local.

76

77

In every other respect, global variables work just like the local variables you already know: you give them a
type, you assign values to them, you perform calculations and tests on them; but you can access them
anywhere:

Global Something:Int = 100

Function Example ()
Print Something
End

Function Main ()
Print Something
Example ()

End

Here, Main will print the value of Something, then call Example (which also prints the value of Something).

Notice that this is the same code as in the previous example, but we've moved the Something variable
‘outside’ of all functions and declared it using Global rather than Local.

You might also notice that we've declared the global variable with a capital letter S: starting globals with a
capital letter is another Monkey naming convention for ease of recognition. As usual, you don't have to do it,
but following this convention helps you instantly to tell the scope of a given variable when reading through
your code.

The Something variable now has global scope, so all functions can access and alter its contents. The result of
this change is that both functions now print the same value, 100.

As with locals, you don't have to assign the value at the start:

Global Something:Int

Function Example ()
Something = 100
Print Something
End

Function Main ()
Print Something
Example ()
Print Something
End

Trace through this example to work out why it prints 0, 100 and 100. As long as you remember that all
program flow starts at Main, you should have no problems!

That last statement might seem given this example, since Monkey clearly reads the value of Something before
it gets to Main.

However at the top of your code, outside of all functions, all you can do is make certain declarations, such as
imports (as you did with Import mojo in the earlier game example), and the declaration of constants and
globals; you can't do anything else, such as calling Print or other functions, using If/Then, loops, etc; so there's
no real program flow until Main.

77

78

Why use Local?

It might seem a no-brainer to just make everything accessible to all functions and use Global for all variables.
Don'’t do it! Only use Global where you really need to.

While modern PCs have huge amounts of memory, devices such as smart-phones are a lot more limited, and
programs that use too much memory can slow down the whole system. (Even on PCs, you should aim to use
as little memory as possible, to be “system-friendly”.)

When you call a function, Monkey will allocate the memory needed to store its local variables; when the
program exits that function, this memory can be freed.

On exiting a function, its variables are no longer accessible and are said to be out of scope. When a variable
goes out of scope, it is destroyed — its contents are made void and its memory is freed up. (It'll be reallocated
from scratch next time you call the function.)

Because global variables are always accessible from anywhere in the program, they are always in scope, and
their memory can never be freed. (Their contents have to stay in memory to be accessible all the time.)

This scope/memory issue is one of the reasons why globals should not be used by default, but other
important reasons include:

* speed: for technical reasons we won't cover here, the computer's processor can usually work much
faster with local variables than globals;

* code organisation: declaring a variable within a function means that you can see and refer to the
variable while you're writing the function; if it was declared along with a hundred other variables
somewhere at the top of your program, you'd have to keep scrolling up and down within the
program (potentially thousands of lines long) to double-check variable names, type, etc;

* limited access to information: this is particularly important when you get to object-oriented
programming, as we're about to do, where an important part of the concept is to limit access to
information in order to reduce the potential for error.

In short, the different parts of a program should know as little as possible about each other. This
way, you know that a given variable can only be modified by a given function or method, which
helps greatly in tracking down bugs. If all variables are global, any part of the program could
potentially be causing the error.

(Variable scope also hugely affects objects, but we'll discuss that separately.)
At this point, you might like to try writing some simple programs of your own, or building upon the earlier

game example and put your new-found knowledge of variables, loops, program flow and all the rest to
some practical use.

78

79

If you choose to just plough straight on, I would recommend at least stopping for a cup of tea (or your
beverage of choice)! Our next topic will be object-oriented programming, a concept that does require a decent
understanding of all the topics we've covered so far.

Object-oriented programming

“Object-oriented programming, eh? Sounds confusing!”
Well, it can get confusing, but the basic concepts are actually quite simple.

So far, we've just created a bunch of unrelated variables and toyed with them: you may remember that we
represented a kilogram bag of sugar as a float value and we briefly did the same for flour. But if we're
baking a cake, why not represent a cake as the collection of ingredients that it really is?

' Cake is made up of these variables:
Local sugar:Float
Local flour:Float

Local butter:Float
Local eggs:Int

If we could bundle all of these variables together into a 'cake object’, it might look something like this:

Cake Object Contains
Local sugar:Float
Local flour:Float
Local butter:Float
Local eggs:Int

End

(Don't try to run this — it's not real Monkey code!)

So, if we were to create a cake object and assign a value to each of its ingredient variables, we'd then have a
single entity — a cake — that can be manipulated and passed around the program, with all of these ingredient
variables bundled together inside it.

Instead of passing a bunch of ingredient variables to a BakeCake function, for example, we can simply pass a
single Cake object; the BakeCake function could then access the Cake object's fields as necessary:

Function BakeCake (Cake Object)
Print Cake Object's sugar variable
Print Cake Object's flour variable
Print Cake Object's butter variable
Print Cake Object's eggs variable

End

79

80
(Again, this is not real code.)

In Monkey, we declare the contents of our “Cake” object using the Class keyword, followed by the name of
the class:

Class Cake
Field sugar:Float
Field flour:Float
Field butter:Float
Field eggs:Int

End

You'll also notice that we declare the variables using the Field keyword instead of Local, but otherwise they
work just as you'd expect.

So, a cake is an object, just as a car is an object; a person is an object; a cat is an object; and so is a dog. The
player's spaceship in a game is an object; its bullets are objects too. Anything can be considered an object!

Rather than trying to make a bunch of unconnected variables interact with each other, we make whole
objects interact with each other, as in the real world.

As you've seen, we define objects (such as the aforementioned cakes, cars, people, cats, dogs, spaceships and
bullets) using the Class keyword. We're creating a new type, or class, of object, which is a list of features of the

object; or at least the features we're interested in.

Take a car, for example: in a driving game we might be interested in knowing its colour (for display
purposes), its top speed, its current speed and its fuel.

Let's build a car!

Classes and objects

A very basic class is simply a bunch of variables bundled together. We could therefore create a Car class
describing the features of a car, which might be made up of the following variables:

Variable Suggested type

colour A string, eg “Red”

top_speed We'll use an integer for this, since it can be a fixed amount
current_speed This can vary by fractional amounts, so we'll use a float
fuel Ditto!

A class's variables are called fields, so a basic Monkey class describing a car might look like this:

Class Car

80

81

Field colour:String

Field top_speed:Int

Field current_speed:Float
Field fuel:Float

End

This code does nothing as it stands; it just describes the particular features of a car that we're interested in for
our game. We can think of this class as a “blueprint” for a car; the design plans.

It's just a description of a Car object, though, and that means we have to actually build a car from this
description for it to be of any use!

Constructing an object

To build a car in the game world, we create a Car object. We do this in much the same way that we've
declared variables all along:

Local auto:Car = New Car

Here, auto is the name of the variable, and Car is the name of the class. After this line is run, we can consider
auto to be a Car object.

Let's look at this in two parts, before and after the equals sign. Here's the variable we're creating, auto:

Local auto:Car

Rather than being of an integer, float or string type, it's using our new variable type: Car. Other than that, it's
declared like any other variable, using the Local keyword.

Then, after the equals sign, we have:

New Car

This is the part that “reads” the blueprint (the Car class) and produces an actual Car object for us. The
resulting object is then assigned to the auto variable. Put back together, we have:

Local auto:Car = New Car

Once we have a Car object assigned to the auto variable, we can access the object's fields. Fields are used just
like ordinary variables, and you can do exactly the same things with them, such as If/Then checks, addition,
subtraction, string joining, etc.

One important difference is that you refer to them in a special way, by specifying the name of the variable,
followed by a dot, followed by the field name. If auto is a Car object and we want to set its fuel field to 100,

81

82
we type:
auto.fuel = 100

It works just like an ordinary variable; take fuel, for example:

fuel = 100
We just put auto. in front of it to indicate that we mean the auto object's fuel variable:

auto.fuel = 100

So, in a more generalised form, it's:

object.field = 100

Don't try to run the code below, but read it and apply the above principles to see if you understand what's
happening. In particular, read the Local declaration and assignment in two separate parts, before and after
the equals sign:

' Create a Car-type variable and assign a new Car object to it:
Local auto:Car = New Car

' Set the Car object's variables, or fields:

auto.colour = “Red”

auto.top_speed = 180

auto.current_speed = 0
auto.fuel = 75

Let's see this class in action; you can run this code:

' The blueprint for a Car object:
Class Car
Field colour:String
Field top_speed:Int
Field current_speed:Float
Field fuel:Float
End
Function Main ()
' The creation of a Car object:

Local auto:Car = New Car

' The Car object, auto, contains all of the fields in the Car blueprint:

82

83

auto.colour = “Red”
auto.top_speed = 180
auto.current_speed = 0
auto.fuel = 75

Print “The colour of this car is: “ + auto.colour
Print auto.fuel

End

Now, let's say we want to reduce the amount of fuel in the car as it drives along; we know that the Car class
contains a field called fuel, and we know that this is just a normal float-type variable.

If we want the car's fuel level to drop, we just subtract as we would with 'normal’ variables, like so:

auto.fuel = auto.fuel - 1
Print auto.fuel

We can also test these fields using If/Endif, just as we do with variables:

If auto.fuel = @
Print “Out of fuel”
Print “Game Over!”
Endif

Another example

You can give a new class almost any name you like, just as you can with variables and functions, but the
name should of course relate to the object you're describing.

Here's a working example; we'll create a simple Rocket class for variety; we'll assume that our rocket has fuel
and can provide a certain level of thrust, so we first create a class containing these two features, then in our
Main function we'll create a Rocket-type object and access its fields:

Class Rocket
Field fuel:Int = 100
Field thrust:Int

End

Function Main ()

Local player:Rocket = New Rocket

Print "Fuel: " + player.fuel
Print "We have a full tank of fuel, captain! Applying thrust!"

player.thrust = 10
Repeat

player.fuel = player.fuel - player.thrust
Print "Fuel: " + player.fuel

Until player.fuel <= ©

83

84

Print "Out of fuell!"

End

In this example, you might notice that the fuel level (100) is declared in the class definition, similar to the
way you can assign a value to a variable when you declare it, as in Local fuel:Int = 100.

Setting the value of a field in the class — in the actual “design plans”, as it were — means that any new Rocket
object will start with fuel already set to 100 upon creation. If you create a thousand rockets on-screen, they'll
all have a fuel level of 100, yet we've only had to set this value once, in the blueprint itself.

As with standard variables, if you don't manually set the values of fields, they'll receive default values: zero
for numbers or an empty string for strings.

In the code above, we print the amount of fuel available, set the thrust level, then repeat in a loop, reducing
the fuel according to the thrust applied. When it reaches zero, we're “all outta gas” and we exit the loop.

Note the code that reduces the fuel value:

player.fuel = player.fuel - player.thrust

This is no different in construction to:

lives = lives - 1

The only practical difference is the way we refer to the fields, via object.field convention.

(In the above code example, I've used the less than or equal to comparison when checking the fuel value, in
case you want to play with the thrust level and the final step takes it below zero. If I used the equals
comparison, the fuel value might jump below zero (so never equalling zero) and the program would never
end.)

Class versus object

Early on, it's easy to mix up class names and object variables; here's a common point of confusion, for
instance:

Class Rocket
Field fuel:Int
Field thrust:Int
End
Function Main ()

Local player:Rocket = New Rocket

Rocket.fuel = 100

84

85

Rocket.thrust = 50

End

Run this, then see if you can tell why it doesn't work, without reading on!

The problem is that we've mixed up class and object; we should be accessing player.fuel, not Rocket.fuel:

Class Rocket
Field fuel:Int
Field thrust:Int
End
Function Main ()

Local player:Rocket = New Rocket

player.fuel = 100
player.thrust = 50

End

The difference between class and object is that:

» the class here is Rocket — that's the blueprint for creating Rocket objects, just a description;
* the object here is player, the variable created from that description.

We generally only use the class name, Rocket, during the creation of objects, to tell Monkey which blueprint it
should build an object from. To perform in-game actions using the newly-created Rocket object, we refer to
the player variable, hence player.fuel, player.thrust, and so on.

Why bother?

You could still write this program using standard integer variables and no class, but when you start to
define lots of rocket features, like so...

Local name:String
Local sprite:Image

Local x:Float
Local y:Float

Local xspeed:Float
Local yspeed:Float

Local fuel:Int
Local thrust:Int

Local ammo:Int
Local damage:Int

... and then want to add a second rocket to the game, it all gets a little wordy... and clumsy:

First player..

85

86

Local name:String
Local sprite:Image

Local x:Float
Local y:Float

Local xspeed:Float
Local yspeed:Float

Local fuel:Int
Local thrust:Int
Local ammo:Int
Local damage:Int

Second player...

Local name2:String
Local sprite2:Image

Local x2:Float
Local y2:Float

Local xspeed2:Float
Local yspeed2:Float

Local fuel2:Int
Local thrust2:Int
Local ammo2:Int
Local damage2:Int

What if you want to create 10 players? Well, you could keep copying, pasting and editing the number on the
end of each variable, I suppose. How about if you're creating bullets to fly across the screen? You might have
thousands of bullets over the game's running time!

You could potentially use arrays for this purpose, but classes bundle all of an object's features into a single
definition:

Class Rocket

Field name:String
Field sprite:Image

Field x:Float
Field y:Float

Field xspeed:Float
Field yspeed:Float

Field fuel:Int
Field thrust:Int
Field ammo:Int
Field damage:Int

End

Rather than being a long list of variables, as in the previous example, classes create a powerful mental model
of a single 'thing' — an object — that possesses all of these features.

Now you can create an infinite number of Rocket objects and you've only had to define their features once:

86

87

Class Rocket

Field name:String
Field sprite:Image

Field x:Float
Field y:Float

Field xspeed:Float
Field yspeed:Float

Field fuel:Int

Field thrust:Int

Field ammo:Int

Field damage:Int
End

Function Main ()

Local playerl:Rocket = New Rocket
Local player2:Rocket = New Rocket
Local player3:Rocket = New Rocket

Print playerl.fuel
Print player2.fuel
Print player3.fuel

End

Objects are 'Null' by default

One point that's worth making here is that declaring a variable of a given class isn't enough to create an
object:

Class Rocket

Field fuel:Int = 100
End
Function Main ()

Local player:Rocket

Print player.fuel

End

If you run this, you'll receive an error. We've declared a Rocket object and tried to print out its fuel level, but
it fails. What's wrong?

Although we've declared the Rocket variable, player, we haven't actually 'built' a Rocket object to assign to it —
remember the New keyword?

The player variable effectively refers to a non-existent object at this point; we call this value Null, and if we
try to perform any operations on a Null object, the program will fail: the object doesn't exist.

Here's a corrected version, which assigns a Rocket object to the player variable:

87

88

Class Rocket
Field fuel:Int = 100
End
Function Main ()
Local player:Rocket = New Rocket

Print player.fuel

End

Alternatively, you can declare a Rocket-type variable in advance and assign a Rocket object to it later:

Class Rocket
Field fuel:Int = 100
End

Function Main ()
Local playeril:Rocket

Local player2:Rocket
Local player3:Rocket

playerl = New Rocket
player2 = New Rocket
player3 = New Rocket

Print playerl.fuel
Print player2.fuel
Print player3.fuel

End

This is similar to declaring a normal variable in advance and assigning a value later:

Function Main ()
Local fuel:Int
fuel = 100
Print fuel

End

One reason you might wish to declare a Rocket variable on one line, but assign an object to it on a separate
line, is to keep your code organised and compartmentalised. You might want to create a list of all Rockets
(and of other game objects) at the top of your code, then assign them all in another section, like so:

Function Main ()

Local playerl:Rocket
Local player2:Rocket
Local player3:Rocket
Local player4:Rocket

88

89

playerl = New Rocket
player2 = New Rocket
player3 = New Rocket
player4 = New Rocket

End

Most experienced programmers would probably advise you to separate the initial declaration of variables and
the assignment of values to those variables like this, but it's a matter of personal preference. Here's another
way to do the same thing:

Function Main ()

Local playeril:Rocket = New Rocket
Local player2:Rocket = New Rocket
Local player3:Rocket = New Rocket
Local player4:Rocket = New Rocket

End

Just be aware that if you initially declare your class variables separately, you still need to assign objects to
them, or they'll contain Null values.

Handles

Object variables are often referred to as 'handles'. Take this code, for example:

Class LaserGun
Field temperature:Float
End
Function Main ()
Local weapon:LaserGun = New LaserGun
If weapon.temperature < 90
Print “Zap!”

Endif

End

By way of explanation, we've created a laser weapon and decided, in typical videogame fashion, that it
overheats with prolonged use. If you run this, temperature will have a default value of zero, so the weapon
will fire.

In general, we can think of weapon as a LaserGun object and treat it accordingly, so if this laser-gun's
temperature were to rise to 90 or above, it would fail to fire.

However, in reality, weapon is only a handle to a LaserGun object. Although the object exists somewhere, we
really only have a variable that refers to it.

89

90

Kites and kite handles

Let's create a Kite object in order to get a handle' on this! We can stretch this analogy pretty far, as you'll see:

Class Kite

Field colour:String
End
Function Main ()

Local handle:Kite
End

OK, so we have a Kife-type variable called handle but it's not attached to anything; we haven't yet used the
New keyword to create a Kite object. Therefore handle has a Null value at this point.

In fact, Monkey's Null keyword can confirm this for us. Run this and you'll see a message telling you there's
no Kite object attached to the handle:

Class Kite
Field colour:String
End
Function Main ()
Local handle:Kite
If handle = Null
Print “This handle has no kite object attached!”
Endif

End

So, you're standing there, on a lovely summer's day, holding a kite handle. There's no kite and there's no
string to attach to a kite. You just have a handle suitable for a kite. That's not much use!

Add this line to the above code, just after the handle declaration:

handle = New Kite

Run it and you'll find there's no message now, which, if you think about it, confirms that the kite handle is
no longer Null —it's attached to a Kite object!

We've effectively built a kite and run a string from the kite to the handle; the kite object is attached to the
handle.

Now, the Kite class contains only a colour, so all we can do right now with our kite is set that colour. Let's
make it red:

Class Kite
Field colour:String
End

90

91

Function Main ()
Local handle:Kite
handle = New Kite
handle.colour = “Red”
Print handle.colour

End

Here's where the analogy admittedly falls apart a little! It reads as if we're setting the colour of the handle.
That's only because the Kite variable is called handle here, for the sake of making a point.

Let's give it a more sensible name:

Class Kite
Field colour:String
End
Function Main ()
Local mykite:Kite
mykite = New Kite
mykite.colour = “Red”

Print mykite.colour

End

This makes more sense, right? It reads as if we're changing the colour of a kite now.

For all the talk of handles attached to kites, you can still think of the renamed mykite variable here as if it's a
whole Kite object, at least after it's been assigned a new Kite object — we'd usually consider the handle to be
part of a kite anyway.

So, for the purpose of manipulating its values (colour in this instance), do think of mykite as a Kite object, but
just be aware that technically it's a handle attached to a Kite object.

91

