
Object-oriented Programming, C++ and Power System Simulation

E.Z. Zhou, MIEEE

EDSA Micro Corp.

200 East Long Lake Rd., Suite 177

Bloomfield Hills, MI 48302

 AbstractApplication of OOP concepts and the C++ program-

ming language to power system simulation has been explored. An

efficient platform for power system simulation applications has

been proposed. By emulating a physical power lab, a generic

power network container has been build. A module, which can be

used to solve sparse matrix equations of any data types, has been

implemented. Two load flow applications: a dc load flow and an

ac load flow have been discussed. It is found that the OOP based

C++ load flow programs are as efficient as their non-OOP counter-

parts.

1. Introduction

 The planning, design and operation of electrical power sys-

tems require simulation analyses to evaluate the current and

future system performance, reliability, safety, and ability to

grow with production or operating requirements. To perform

computer simulation analysis, a power system is represented

by a set of data with certain structures. Analysis algorithms are

implemented to process the data to produce simulation results.

For different applications the data structures are different. Dif-

ferent programs (load flow, short circuit, stability...) are built

for different applications. With conventional programming

languages (Fortran, C, Pascal) the coupling between the data

structures and the algorithm procedures are very strong. A mi-

nor change may propagate through a whole program[1]. As a

result, software modification and evolution may require a time

period proportional to the size of the software rather than the

magnitude of the changes.

 There are serious problems with today's approaches to

build Energy Management Systems (EMS)[2]. The present

EMS architecture is inflexible. It precludes a logical and

phased replacement of its subsystems and usually ends up with

an entire replacement in about ten years[3]. The solution to

the problem is to use open system architectures. Standards are

used and key interfaces are disclosed to enable

incremental growth. Multiple suppliers are available for vari-

ous upgrades. The utility can select the best hardware and

software for each phase of the upgrade. One of the key fea-

tures of an open EMS is modular compatible application soft-

ware[11]. Third parties will be able to offer new application

software that function with the existing applications. One

promising approach to achieve the modularity is to use object-

oriented programming (OOP) approaches which are designed

to address the problems associated with large-scale software

developments.

 The potential of OOP for power system simulation applica-

tions has been well recognized. There are OOP applications to

database management[4], graphical user interface[5] and

power system simulation[1]. So far these applications are

based on some existing platforms (class library and pro-

gramming environment). On top of a well-developed platform

one can easily build his application programs through inherit-

ing the features in the library. One shortcoming of this ap-

proach is that one has to tailor his problem to be fitted into the

existing platform. This may sometimes result in a very com-

plicated, hard-to-understanding representation of an originally

simple concept. For example transmission lines are repre-

sented as a Line class, a subclass of class NPort, which is then

a subclass of class Physical in ref.[1]. The complicated struc-

ture will often create heavy overhead. The program runs

slower because of large amount of unnecessary message pass-

ing between objects and requires more memory. A test case in

ref.[1] indicates that about 40% of the total CPU time was

spent on message passing.

 Application of OOP concepts and the C++ programming lan-

guage[6] to power system simulation will be explored in this

paper. An efficient platform for power system simulation ap-

plications will be developed by using C++ as a programming

language (not as an existing platform). The author believes

that platforms for power system simulation applications

should be created by power engineers. A brief review of C++ is

presented in Section-2. By emulating a physical power lab, a

generic power network container is build in Section-3. In Sec-

tion-4 a sparse equation module is introduced which can be

used to solve sparse equations of any data structures. Load

flow application problems are discussed in Section-5. The ef-

ficiency of C++ implementation of an ac load flow program and

a dc load flow program is compared with a Fortran version

and a Pascal version in Sec.6.

2. A Review of C++

C++ is a very popular and efficient OOP language. Some

of important C++ features will be briefly discussed in this sec-

tion.

2.1 Template

 One of the most important improvements of OOP ap-

proaches over non-OOP approaches is the flexibility of reus-

ing existing code. Beginning with the AT&T 3.0 Standard, C++

offers a feature, called template, that extends code reuse even

further. Let us use the following simple example to show the

usefulness of the template feature. The Ohm's law in power

system analysis can be expressed as follows:

 V = Z × I (1)

where, Z is the impedance of a device, I the current through

the device and V the voltage drop. For dc power distribution

system analysis, V, I, Z are real numbers. For ac system analy-

sis, V, Z, I are complex numbers. If it is for 3-phase unbalance

situation analysis by using the abc coordinates[9], V, I would

be 3×1 complex vectors and Z 3×3 complex matrix. With the

introduction of template, it is possible to write a generic func-

tion to cover all possible Ohm's law applications, as follows:

template<class Tz, class Tvi>
 Tvi voltage(Tz z, Tvi i)
 { return z*i; }

The template statement basically tells C++ compiler that Tz and

Tvi represent any data types. The compiler will generate code

for as many different functions as it needs to satisfy the calls

made to the voltage function.

2.2 User-defined Data Types

 For the analysis of small disturbances (changes) around a

steady-state operating point, eqn(1) in complex form would

become:

∆

∆

∆

∆

V

V
r x

x r

I

I
x

y

x

y
=

−
 (2)

C++ allows the users to define data types that are most suitable

for their own applications. To represent the relationship of

eqn(2) the following two data types are defined:

class Vect_xy {
 Double x, y;
 ...
 };
class Matr_xy {
 double xx, xy, yx, yy;
 ...
 };

After the data types Vect_xy, Matr_xy are properly de-

fined and implemented, the voltage function can be called to

compute the voltage vector in eqn(2).

2.3 Operator Overloading

 When the voltage function is called to calculate eqn(2), a

multiplication of a 2×2 matrix (Matr_xy) and a 2×1 vector

(Vect_xy) is performed inside the function. This is possible

because C++ allows the math operators (+,-,×,/...) being over-

loaded, called operator overloading. With the operators prop-

erly overloaded, user-defined data types in C++ could be used

as if they were compiler build-in data types (int ...).

2.4 Inline Functions

 One of the criticisms that is often addressed to OOP lan-

guages is that they are much less efficient than the traditional

non-OOP languages. This is unquestionably true for some

OOP languages. The load flow program implemented in Ob-

jective-C is about 2-3 times slower than a Fortran imple-

mentation[1]. But this is far less apparent in the case of C++. In

fact, efficiency is one of the goals stated by the inventor of

C++[6]. For example, one of the properties that can make an

OOP program slower than a non-OOP program is the heavy

use of data access functions, which is a direct consequence of

the application of the information-hiding principle. C++ lets

you make inline substitutions of functions, which means that

every function call is actually replaced at compiling by the

function's executable code to avoid the overhead due to the

actual calling of the function.

3. A Network Container

 Before the introduction of computers to power system

simulation, the analysis was usually done on an ac network

analyzer in a power lab. A power lab is conceptually a place

(a house) where there are positions that can be defined as

buses. Branch elements (lines, transformers) can be connected

to the buses to form a power network. A power lab is de-

signed and built to be generic so that different kinds of ex-

periments (load flow, short circuit, ...) can be performed. To

emulate this concept, a network container will be designed in

this section. The design objective is that the container should

be generic, flexible and reusable for different kinds of appli-

cations.

 For identification purpose, a unique name or id needs to be

assigned to each element in a network. To serve this purpose

the following data type is defined.

class NameTag {
 char* id; // name id
 int noSort; // number for sorting
 ...
 };

The noSort is a number for element sorting purpose.

3.1 Bus Class

 In a power lab, a bus is a position where a branch or

branches can be connected to. To emulate this idea, the fol-

lowing data type is defined as a base bus class.

class Bus : public NameTag {
 ListOfPtr<NameTag> branchConnected;
 ...
 };

Bus is a subclass of NameTag, inheriting all its features. Bus

has an id for identification purpose, a number noSort for

sorting purpose and a list of pointers, pointing to the branches

connected to the bus. Any number of branches can be con-

nected to a bus object (an instance of Bus) by adding pointers

to the branches into the branchConnected list.

3.2 Branch Class

 A branch is a device with two terminals (from terminal and

to terminal) which can be connected between two buses

(from-bus and to-bus). The following data type is defined as a

base branch class:

template<class TBus> // TBus: bus template
 class Branch : public NameTag {
 TBus* ptrFromBus; // ptr to from bus
 TBus* ptrToBus; // ptr to to bus
 ...
 };

Branch has two pointers: one points to the from-bus and the

other points to the to-bus. TBus is a template for the bus ob-

jects, to which the branch objects (instances of Branch) will

be connected.

3.3 A Network Container

 A network container for the simulation purpose should be

designed as if it is a place where buses can be defined, and

branches can be connected between the defined buses to form

a network. The following data type is defined as a base net-

work class, a generic network container.

template<class TBus,class TBra>
 class Network : public NameTag {
 LinkedList<TBus> busList;
 LinkedList<TBra> branchList;
 public:
 void addBus(...);
 TBus& getBus(...);
 void addBranch(...);
 TBra& getBranch(...);
 void resortBus(...);
 void resortBranch(...);
 void arrangeBusno(...);
 ...
 };

At the center of the container there are two linked lists, one

for storing bus objects and the other for branch objects. The

LinkedList<T>, a linked list class of data type T[13], knows

how to manage memory dynamically. With the help of the

templates TBus, TBra, any kinds of bus and branch objects

can be stored into the container. Network utility functions (

arrangeBusno(), resortBus(), ...) are imple-

mented in the container which will be available through in-

heritance to all network application programs. The network

can arrange bus number of the buses in the container accord-

ing to one of the rules: Tinney1, Tinney2 or Tinney3[7].

 The following is a simple example of storing information

into and then retrieving from the container.

Network<Bus, Branch> myNet;
Bus myBus1, myBus2;
Branch myBranch;
 ...
myNet.addBus('bus1', myBus1);
myNet.addBus('bus2', myBus2);
myNet.addBranch('bus1', 'bus2', myBranch);

 ...
Bus& aBus=myNet.getBus('bus1');
Branch& aLine=myNet.getBranch('bus1','bus2');
 ...
myNet.resortBus(By_id);
myNet.arrangeBusno(Tinney2);

 The Bus class, the Branch class and the Network con-

tainer so far are very simple and cannot do any real simulation

work, just like an empty power lab. They have a few key fea-

tures common to, and will serve as core code for, all power

network simulations. They can be easily maintained because

of the simplicity. We will see in later sections how these sim-

ple modules can be combined with other modules to solve

load flow problems. This is the evolutionary way of the OOP

approach.

4. Sparse Equation Solution

 At the center of power network solution is the solution of

the following sparse matrix equation:

 [A] × [x] = [B] (3)

where, [A] is a nonsingular sparse matrix, [B] is a given vec-

tor and [x] is an unknown vector to be found. Sparse matrix

method[7] are now used for solving almost all large power

network problems. Although the data types of eqn(3) for dif-

ferent applications may be different, the logic of LU factoriza-

tion of [A], the forward and backward substitution processes

of solving eqn(3) are independent of its data types. The fol-

lowing is a generic class for solving sparse equations in terms

of two templates TAij, TBi.

template<class TAij,class TBi>
 class SparseEqn {
 SortedList<A_Elem<TAij>> Amatrix;
 public:
 void setBvector(...);
 void addAmatrix(...);
 int solveEquation(...);
 ...
 };

Only non-zero elements of [A] are stored in the list Amatrix.

The SortedList<T> is a sorted linked list class of data type

T[13]. The sorting is according to element relative positions in

[A]. Also the LU factors are stored in the list, overriding the

[A] matrix to reduce memory requirements. With the help of

templates TAij, TBi, SparseEqn can be used to solve

sparse matrix equations of any data types. The following is a

simple example:

2 5 0 5 0 0

0 5 0 6 0 0

0 0 3 1 1 7

0 0 0 0 7

1 5

0 6

3 5

2 7

1

2

3

4

. .

. .

. .

.

.

.

.

.

x

x

x

x

=

(4)

 If the [A] is treated as a 4×4 matrix of real numbers and

[B] a 4×1 vector, the problem can be solved as follows:

SparseEqn<double,double>
 myEqn1(4,NonSymmetric);
myEqn1.setBvector(...);
 ...

myEqn1.addAmatrix(...);
 ...
myEqn1.solveEquation(1.e-30);

 Also the [A] can be partitioned into a 2×2 matrix (of 2×2

elements) and [B] into a 2×1 vector. By using the data types

Matr_xy, Vect_xy defined in Section-2, the problem of

eqn(4) can be alternatively solved as follows:

SparseEqn<Matr_xy,Vect_xy>
 myEqn2(2, Symmetric);
 ...
myEqn2.solveEquation(1.e-30);

 One would assume that the second 2×2 matrix approach

might be slower than the first 4×4 matrix approach because

the user defined data types (OOP feature) are involved in the

2×2 approach. The following is the CPU time used in solving

eqn(4) by the two approaches for 1000 times on a

486DX/33Mz PC:

 4×4 approach: 0.55 sec. 2×2 approach: 0.44 sec.

The performance tests indicate that the 2×2 approach is even

faster than the 4×4 approach. The main reason is that all

member functions of Matr_xy, Vect_xy are declared as

inline functions. This makes them as efficient as the compiler

build-in data types.

 The key points of SparseEqn are modularity and flex-

ibility. Sparse matrix equations of any data types can be

solved by using the module. It is a self-contained module,

managing its memory dynamically. To the user it is a "black

box" with the sparse matrix solution capability. The sparse

matrix method is now under intensive investigation[10,12]. If

any future modifications or improvements are needed the

modifications can be contained to SparseEqn itself and

would not propagate to the outside.

5. Load Flow Applications

 Load flow is one of the most commonly use power system

analyses. From computation point of view, the problem can be

simply stated as follows:

For specified voltage (V, θ and/or generation (Pg, Qg) at

generator buses and specified load (Pl,Ql) at load buses,

find a set of bus voltage by iteration such that the mis-

match between specified quantities and calculated quan-

tities is within a required tolerance.

 The convergence of a load flow study is tested by the fol-

lowing equation:

max #

1≤ ≤

≤
i n

mismatch at bus i tolerance

(5)

The mismatch is computed based on bus Y-matrix and bus

voltage.

 So far, a Bus class, a Branch class and a Network con-

tainer have been implemented. Also there is a SparseEqn

class for sparse matrix equation solutions. In this section these

modules will be combined together with some new modules to

solve load flow problems.

5.1 Load Flow Base Classes

 For different load flow applications (dc load flow, ac load

flow ...) the details of implementations, especially the data

structures, might be quite different. But all load flows share

some common features. These common features are extracted

and implemented in the following three load flow base

classes: LFBus, LFBranch, LFNet.

template<class T>
 class LFBus : public Bus {
 T voltage; // bus voltage
 public:
 virtual T yii(void) = 0;
 virtual T mismatch(void) = 0;
 ...
 };

LFBus is a subclass of Bus, inheriting all its features. The

voltage is for bus voltage. The voltage data type is de-

fined in terms of a template T so that it can be used for dif-

ferent applications. The yii() function is for finding the di-

agonal element yii of Y-matrix corresponding to the bus. The

mismatch() is for bus mismatch calculation.

template<class T,class Tbus>
 class LFBranch : public Branch<TBus> {
 public:
 virtual T yij(void) = 0;
 ...
 };

LFBranch is a subclass of Branch. The yij() function is for

finding the off-diagonal elements yij corresponding to the

branch. TBus is the template for the buses to which the branch

will be connected.

template<class TV,class TM,
 class Tmis, class Tbus, class TBra>
 // TM,TV: for sparse equation
 // TMis : for mismatch information
class LFNet: public Network<TBus,TBra> {
 public:
 virtual TMis maxMismatch(void) = 0;
 virtual void formJmatrix(
 SparseEqn<TM,TV>& eqn) = 0;
 int loadFlow(void);
 ...
 };

LFNet is a subclass of Network. Therefore LFNet is also a

network container. Bus objects, branch objects and their con-

nection configuration as a network can be put into the con-

tainer. In addition, the LFNet container has load flow applica-

tion features. The maxMismatch() is for finding the maxi-

mum bus mismatch and the location where the maximum oc-

curs. The formJmatrix() is for forming Jacobian matrix.

The J-matrix is stored into the sparse matrix equation object

eqn. The data types of J-matrix are specified with two tem-

plates TM, TV because they might be different for different

load flow applications.

 LFBus, LFBranch, LFNet contain pure virtual func-

tions (indicated by virtual...=0)[13]. These functions are

purely virtual in that they do not define any code but act as a

pattern of interface for all subclasses. For example, formJma-

trix() of LFNet class is a pure virtual function. It tells the

subclass of LFNet that, although the details of actual imple-

mentation of formJamtrix() might be different for different

applications, the interface of the actual functions must be the

same as the pure virtual function so that the actual functions

can be properly plugged into the system to perform load flow

computation.

 In the LFNet class a generic Newton-Raphson load flow

function loadFlow() is implemented. The main part is as

follows:

SparseEqn<TM,TV> lfEqn(get_noBus());
for (int cnt=0;cnt<=maxIteration;cnt++) {
 if (maxMismatch() <= tolerance) {
 return CONVERGED;
 } else {
 formJmatrix(lfEqn);
 forEachBusInNet(bus)
 { ... // set B vector }
 lfEqn.solveEquation(1.0e-20);
 forEachBusInNet(bus)
 { ... // update bus voltage }
 }
}
return NOT_CONVERGED;

The loadFlow() function is generic, only includes those

steps common to all load flow applications. The function is

implemented in terms of bus, branch, mismatch, Jacobian ma-

trix element templates and the pure virtual functions that de-

fine the function interface. Any class that contains one or

more pure virtual functions is called an abstract base

class[13]. It can be only used as a base class for other classes.

No objects of an abstract class can be created. LFBus,

LFBranch, LFNet are abstract base classes for load flow

applications.

5.2 AC Load Flow

 Ac load flow has been the most commonly used load flow

analysis program. In ac load flow analysis bus voltage, gen-

eration, load, and branch impedance are complex numbers in

nature. Based on the load flow base classes LFBus,

LFBranch, LFNet, the following three subclasses are de-

rived for ac load flow analysis.

class ACLFBus : public
 LFBus<complex> { ... };

ACLFBus is a subclass of LFBus with complex substituting

the template T for bus data type. Therefore the voltage,

yii(), mismatch() which ACLFBus inherits from LFBus

are of type complex. The yii(), mismatch() functions de-

fined in LFBus are pure virtual functions. The actual complex

version of these functions has to be implemented inside the

subclass ACLFBus.

class ACLFBra : public
 LFBranch<complex,ACLFBus> { ... };

ACLFBra is a subclass of LFBranch with complex substitut-

ing the template T for branch data type and ACLFBus substi-

tuting TBus, so that ac load flow branch objects will be con-

nected to ac load flow bus objects.

class ACLFNet : public
 LFNet< Vect_xy, Matr_xy, AC_misStruct,
 ACLFBus, ACLFBra > {
 void formJmatrix(
 SparseEqn<Matr_xy,Vect_xy>& eqn);
 ...
 };

ACLFNet is a subclass of LFNet. The substitutions of the tem-

plates indicate that ac load flow bus objets and branch objects

are to be put into the ac load flow network container ACLF-

Net. For ac load flow using the Newton-Raphson method in

the rectangular coordinates, the Jacobian matrix elements are

2×2 matrices and voltage increments [∆Vx, ∆Vy] are 2×1 vec-

tors[9]. The data structure is similar to that of eqn(2). There-

fore the 2×2 matrix data type Matr_xy, and 2×1 vector data

type Vect_xy defined in Section-2 are used for the sparse ma-

trix equation data types.

 With the ac load flow classes properly implemented, load

flow analysis of an ac power system is quite simple, as fol-

lows:

ACLFNet myACLFNet;
cin >> myACLFNet;
myACLFNet.arrangeBusno(Tinney2);
if (myACLFNet.loadFlow() == CONVERGED)
 cout << myACLFNet;

Where, an ac load flow network object (container)

myACLFNet is first defined. By the overloaded I/O operator

>>, data of a study case is input into the container. Depending

on how the operator is overloaded, the data might come from

a text file, a binary file, from other simulation process or di-

rectly from the screen of a graphic editor. Then the bus num-

ber is rearranged by using the arrangeBusno() inherited

from the Network class. Load flow is calculated by calling

the loadFlow() inherited from the LFNet class. If the load

flow converges, the I/O operator << will direct the results to

somewhere depending on how the operator << is overloaded.

5.3 DC Load Flow

 Direct current (dc) power distribution systems have been

extensively used in nuclear power plants and underground

transit systems. To find voltage and voltage drop at load buses

of a dc distribution system dc load flow studies are

needed[14]. For dc system analysis all quantities involved are

real numbers. Based on the load flow base classes LFBus,

LFBranch, LFNet, the following three subclasses are de-

rived for dc load flow analysis.

class DCLFBus : public
 LFBus<double> { ... };

class DCLFBra : public
 LFBranch<double,DCLFBus> { ... };

class DCLFNet : public
 LFNet<double,double,DC_misStruct,
 DCLFBus, DCLFBra > {

 void formJmatrix(
 SparseEqn<double,double>& eqn);
 ...
 };

For dc load flow using the Newton-Raphson method, the Jaco-

bian matrix elements and voltage increments ∆V are real num-

bers. Therefore double is used for the sparse matrix equation

data types. With the dc load flow classes properly imple-

mented, load flow analysis of a dc power system is as follows:

DCLFNet myDCLFNet;
cin >> myDCLFNet;
myDCLFNet.arrangeBusno(Tinney2);
if (myDCLFNet.loadFlow() == CONVERGED)

 cout << myDCLFNet;

 Inheritance is one of the most powerful tools available in

OOP. It allows you to abstract common behavior between

similar objects into a base class and define derived subclasses,

not from scratch, but in terms of the base class without having

to rewrite the similar parts every time. The class hierarchy of

load flow applications is shown in fig.1. There are four layers

in the hierarchy. The first layer is the NameTag class. The

second layer consists of Bus, Branch and Network, and

handles the common features of power networks. The third

layer consists of LFBus, LFBranch and LFNet, and adds

the common features of load flow studies to the hierarchy. The

fourth layer deals with the details of different load flow appli-

cations. Fast decoupled load flow method and 3-phase unbal-

anced load flow are also implemented. Their discussion has

been omitted due to the space limitation.

6. Performance Test Results

 It is desirable to design a flexible software project that is

easy to build and easy to maintain, but it also needs to be con-

cerned that the software must be efficient. For power system

simulation software the top priority is their performance. It is

very hard to justify to sacrifice efficiency for flexibility[8]. C++

itself is a very efficient programming language. The perform-

ance of a C++ application is mainly dependent on the way by

which one programs (speaks) the language. An example in

Sec.4 indicates that adding OOP features to a routine does not

necessary mean slow in speed. In the following the perform-

ance of a C++ implementation of the ac load flow (Sec.5.2) is

compared with a Fortran load flow program, and a C++ imple-

mentation of the dc load flow (Sec.5.3) with a Pascal version.

NameTag

DCLFBus

ACLFBus

DCLFBra

ACLFBra

Bus LFBus

Network LFNet

Branch LFBranch

DCLFNet

ACLFNet

...

...

...

Fig.1 The class hierarchy

Table-1 Performance tests, CPU time in seconds

 Cases Fortran Pascal C++

 ac 35-bus (6 iter.) 1.53 - 0.66

 ac 69-bus (6 iter.) 5.26 - 1.65

 dc 100-bus (4 iter.) - 0.33 0.48(0.38)

 ac 69-bus (100 iter.) 51.15 - 27.97

 ac 35-bus (100 iter.) 15.33 - 11.70

 dc 100-bus (100 iter.) - 10.55 13.30(11.12)

 Two ac power systems (35-bus and 69-bus) and a 100-bus

dc system are used to measure the performance. The load flow

tests were performed on a 486DX/33Mz PC. The Fortran

compiler used is the Lahey Fortran-77 (v3.00), the Pascal

compiler: Turbo Pascal (v6.00) and the C++ compiler: Borland

C++ (v3.1). The load flows converge in 6 iterations for the two

ac systems and in 4 iterations for the dc system. The CPU time

used by different programs is shown in Table-1. To measure

the "true" numerical performance of the programs the tol-

erance for convergence was set to 0.0 to make the load flow

computation impossible to converge and the maximum itera-

tion was set to 100 so that the computation stops at the 100th

iteration.

 The CPU time test results in the table indicate that the C++

implementation is slower than the Pascal version and faster

than the Fortran version. The reason for the C++ version slower

than the Pascal version is that in the Pascal implementation

the J-matrix and its LU factors are stored in two separate fixed

arrays, while in the C++ implementation the J-matrix and its

LU factors are stored in a sorted list with memory dynamically

allocated (see Sec.4). The improvement in memory efficiency

results in slower in speed. If the same fixed array storage

scheme is used, C++ implementation of the dc load flow is as

faster as the Pascal version. The CPU time is shown in the

brackets in Table-1. The reason why the Fortran im-

plementation of the ac load flow is slower than the C++ version

is not clear. It may be because the Fortran compiler used is an

old version (1988), which may not be able to take full advan-

tages of a 486 machine.

Memory requirement is also important when the effi-

ciency is concerned. There are mainly three chunks of data:

bus data, branch data and LU factor table in the load flow ap-

plications. They are stored in the network container and the

SparseEqn class in three linked lists instead of three fixed

arrays. The linked list classes used are from the Borland C++

library[13], that knows how to allocate and free memory dy-

namically. With the fixed array approach, a statement would

always come with a load flow program, for example, this is a

2000-bus version. With the linked list approach, a program

only uses an amount of memory necessary to simulation a par-

ticular power network. If the program is running under Win-

dows or Dos protected mode[13] one could practically simu-

late power networks of any size.

7. Conclusions and Comments

 Application of OOP concepts and the C++ programming

language to power system simulation has been thoroughly ex-

plored. An efficient platform for power system simulation ap-

plications has been proposed. It is found that the OOP ap-

proaches and C++ are very flexible and highly efficient, as effi-

cient as non-OOP programming languages if properly imple-

mented.

 The most difficult part of power system simulation pro-

gramming is to deal with the network relationship. By emulat-

ing a physical power lab, a generic power network container

has been build. Any types of bus objects can be put into and

retrieved from the container, and any kinds of branch objects

with two terminals can be connected between the buses in the

container. The network container can be used as the base class

for all power network simulation applications.

 A module for sparse matrix equation solution has been im-

plemented. The module is very flexible. Sparse equations of

any data type can be solved by the module. It is a self-

contained module, managing its memory requirement dynami-

cally by itself.

 Two load flow applications: a dc load flow and an ac load

flow have been discussed. The implementation of the load

flow algorithms takes full advantage of inheritance. The C++

implementation of the load flow algorithms has been com-

pared with non-OOP load flow programs for performance

evaluations. It is found that the C++ implementation is as effi-

cient as the non-OOP counterparts.

 Author's experience with OOP and C++ has been very posi-

tive. The key advantage of using C++ is not so much that it can

do things that the non-OOP languages can not do, but rather

that it can help you think and approach your problems in ways

that otherwise might not be possible or considered. The author

predicts that OOP and C++ will compete with the non-OOP

programming languages in the near future as an alternative

way to program power system simulation software.

8. References

[1] A.F. Neyer, F.F. Wu and K. Imhof, "Objected-Oriented

Programming For Flexible Software: Example of a Load

Flow", IEEE Tran. on Power Systems, Vol.5, No.3, Aug.

1990, pp 689-696.

[2] A.M. Sasson, "Open systems procurement: a migration

strategy", IEEE/PES 1992 Winter Meeting (92WM158-6),

New York, New York, Jan. 1992

[3] J.L. Scheidt, M.E. Robertson, "The Problem of Upgrading

Energy Management Systems", IEEE Tran. on Power Sys-

tems, Vol.3, No.1, Feb. 1988. pp118-126

[4] D.G. Flinn, R.C. Dugan, "A Database for Diverse Power

System Simulation Applications", IEEE Tran. on Power

Systems, Vol.7, No.2, May 1992, pp784-790.

[5] M. Foley, A. Bose, W. Mitchell and A. Faustni, "An Ob-

ject Based Graphical User Interface for Power Systems",

IEEE/PES 1992 Winter Meeting, New York, New York,

Jan. 1992

[6] B. Stroustrup, The C++ Programming Language, 2nd edi-

tion, Reading, MA, Addison-Wesley.

[7] W.F. Tinney, I.W. Walker, "Direct Solutions of Sparse

Network Equations by Optimally Ordered Triangular Fac-

torization", Proc. of the IEEE, vol.55, Nov. 1967, pp 1801-

1809.

[8] D. Kirschen, G. Irisarri, Discussion to [1]

[9] J. Arrillaga, C.P. Arnold, Computer Analysis of Power

Systems, John Wiley & Sons, 1990.

[10] M.K. Enns, W.F. Tinney, F.L.Alvarada, "Sparse Matrix

Inverse Factors", IEEE Tran. on Power Systems, Vol.5,

No.2, May. 1990.

[11] R. Podmore, "Criteria for Evaluating Open Energy Man-

agement Systems", IEEE Tran. on Power Systems, Vol.8,

No.2, May. 1993.

[12] W.F. Tinney, V.Brandwajn, S.M. Chan, "Sparse Vector

Method", IEEE Tran. on PAS, Vol.104, No.2, Feb. 1985,

pp295-301.

[13] Borland International, Borland C++ Programmer's Guide,

version 3.1, 1992.

[14] E. Zhou, A. Nalse, "Simulation of DC Power Distribution

Systems", 1994 IEEE I&CPS Tech. Conf., Irvine, CA, May

1994, pp 191-195.

Erzhuan Zhou (IEEE member 1990) received his B.Sc. de-

gree in EE from Hunan University, Hunan, China in 1982; his

M.Sc and his Ph.D. degrees in EE from Tsinghua University,

Beijing, China, in 1984 and 1987 respectively. From 1990 to

1992 he was an assistant professor with the department of EE,

the University of Saskatchewan. He is now the vice president

of EDSA Micro Corp., Bloomfield Hills, Michigan. Dr.

Zhou's current research interests are power system simulation,

OOP applications, oscillations in power systems and applica-

tion of PC to power engineering.

