
1

An Implementation of Sawzall on Hadoop
Hidemoto Nakada∗, Tatsuhiko Inoue† and Tomohiro Kudoh‡

∗,‡ 1-1-1 National Institute of Advanced Industrial Science and Technology,
Umezono, Tsukuba, Ibaraki 305-8568, JAPAN

† Soum Corporation, 1-34-14 Hatagaya, Setagaya-ku, Tokyo, 151-0072, JAPAN

Abstract—Sawzall is a script language designed for batch
processing of large amount of data, based on MapReduce parallel
execution model, which is introduced by Google in 2006. Sawzall
allows programmers only to program mappers to ease the burden
for them. Sawzall provides a set of built-in aggregators that
provides reducing function, from which programmers could
pick and use. We have implemented a Sawzall compiler and
runtime, called SawzallClone, which allows Sawzall scripts to
run in parallel on Hadoop. We employed Scala language to
leverage Scala’s parser combinator libraries for Sawzall syntax
parsing. It enabled easy implementation of parser and potential
future extension of the language. This paper provides detailed
implementation of the system. We performed evaluation on the
system comparing with the Java programs that use native Hadoop
API and szl, a Sawzall open source implementation from Google.
We confirmed that overhead imposed by SawzallClone is small
enough, and the execution speed is comparable with szl.

I. INTRODUCTION

MapReduce [10] became very popular as a parallel pro-
gramming paradigm and along with the wide adoption of
Apache Hadoop [1], it is now used in practical business data
processing as well as scientific data analysis.

Although they say programming in MapReduce is easy, and
actually it is much better than MPI, it is not easy enough for
engineers who are not familiar with programming. In Hadoop,
programmers have to provide three different programs, namely,
mappers, reducers, and the main program, which configure
mappers and reducers, as shown in figure 1. Moreover, in
Hadoop, static type checking for intermediate data does not
work. It causes runtime error and complicates debugging the
programs.

Google proposes a language called Sawzall [14] that is
intended for large-scale log analysis with MapReduce. Sawzall
ease the burden of programmers providing reducers as built-
in capability of the language system. Programmers are only
responsible for writing mappers. In 2010, Google published
Sawzall system called szl [7] as open source software. It is,
however, not for parallel execution. It just provides sequential
execution so far.

We implemented a Sawzall, named SawzallClone, that
leverage Hadoop as a runtime environment. SawzallClone is
composed of compiler and runtime library both written in
Scala. Sawzall scripts are compiled into Java source code that
will do the task of mapper, and then compiled into Java byte
code with Java compiler. Runtime library provides reducer
capability.

We evaluated SawzallClone on Hadoop comparing with
programs written with native Hadoop API. The result showed

Hadoop	

Mapper	
 Reducer	

Main	

Fig. 1. Program for Hadoop.

INSERT OVERWRITE TABLE user_active
SELECT user.*
FROM user
WHERE user.active = 1;

Fig. 2. An Example of Hive QL Description.

that overhead imposed by SawzallClone is negligible.
The rest of paper is composed as follows: Section II

introduce some related work. In section III, we give brief
description of the Sawzall language. In section IV, we de-
scribe detailed implementations of SawzallClone. Section V
provides evaluation compared with native Hadoop description.
In Section VI, we conclude the paper with summary and future
work.

II. RELATED WORK

Several language systems are proposed for easy processing
on Hadoop.

a) Hive QL: Hive [2] [16] is a warehouse scale data
base system that enables search with a declarative language
called Hive QL, which resembles SQL. Hive is extensively
utilized in Facebook. Hive stores serialized structured data
on HDFS. Meta-information, such as database schemata and
table locations on HDFS are managed by an RDB outside
of Hadoop, which is called Metastore. While Hive provides
a set of built-in functions for QL, users can define his/her
own functions called UDF (User-Defined Functions), in Java.
As shown in figure 2, Hive QL syntax is quite similar to the
standard RDB SQL, making transition from RDB to Hive easy.

b) Pig Latin: Apache Pig [4] [13] is a data processing
environment on Hadoop that uses a language called ’Pig Latin’
for description. Pig Latin scripts are compiled into several
cascading MapReduce processes that run on Hadoop. In Pig
Latin, the data processing is described in imperative manner,
in contrast with Hive QL that provides declarative description.
The style is more intuitive for non-SQL programmers. Figure
3 shows an example of Pig Latin Script. Pig also provides way
to extend the language with user-defined functions written in
Java.

2

records = LOAD ’input/sample.txt’
AS (year:chararray, temperature:int, quality:int);

filtered_records =
FILTER records BY temperature != 9999 AND
(quality == 0 OR quality == 1);

grouped_records = GROUP filtered_records BY year;
max_temp = FOREACH grouped_records GENERATE group,

MAX(filtered_records.temperature);
DUMP max_temp;

Fig. 3. An Example of Pig Latin Script.

mapReduce(
{ input: {type: "hdfs", location: "sample.dat"},
output: {type: "hdfs", location: "results.dat"},
map: fn($v) ($v -> transform [$.x, 1]),
reduce: fn($x, $v)

($v -> aggregate into {x: $x, num: count($)})
});

Fig. 4. A MapReduce program in Jaql

c) Jaql: Jaql [3] [9] is a language system to make
searches on data stored on HDFS. It assumes that all the
data stored is formatted in JSON (JavaScript Object Nota-
tion). JSON is a self descriptive format, i.e. no extra schema
description required. Figure 4 shows a MapReduce example
in Jaql, which reads structured data in sample.dat, groups
it by attribute x, counts the number, and outputs the results to
the file results.dat.

III. SAWZALL

In this section, we briefly describe the language Sawzall
based on the literature [14].

A. Overview

Sawzall [14] is a language based on MapReduce, which is
said to be used in Google for log analysis. The goal of Sawzall
is to make it even easier to write MapReduce program. The
idea is to expose only the map portion to the programmers
providing built-in reducers as a part of the language runtime.
The programmers are only responsible for the mappers. It is
intended to make non-expert users possible to write scripts for
themselves.

Sawzall is a typed language. It is specialized for mapping,
i.e., it processes all the target entries one by one. It is Similar
to the AWK language [8], which processes text files one line
by one line. There is, however, a fundamental difference. In
AWK, there is a global state that could be shared and modified
by each line processing. In Sawzall, there is nothing shared.
Each entry is processed in completely independent way.

Sawzall provides a set of ’aggregators’ to do the reducing
job. Using the aggregators, programmers are freed from burden
of writing reduction phase.

Sawzall implicitly assumes that all the structured data on the
storage are serialized using Protocol Buffer, described below.

B. Protocol Buffers

Protocol Buffers [5] is a binary data representation of struc-
tured data used heavily in Google. It is language neutral and
architecture neutral, i.e., binary data serialized with Protocol
Buffers on a machine with a program are guaranteed to be
readable no matter what machine and language is used by

message Person {
required int32 id = 1;
required string name = 2;
optional string email = 3;

}

Fig. 5. An Example of proto files.

the reader. The goal is somewhat similar to XDR (External
Data Representation) [15], but it is focusing on reducing data
amount in the serialized format.

To use Protocol Buffers, users have to explicitly declare
the data schemata with a language neutral IDL. The files
contains the declaration are called proto files. Figure 5 shows
an example of proto file.

The proto files are compiled into stub codes that includes
language dependent declaration of the data structure and the
serialization / deserialization codes that convert internal data
representation from / to external (binary) representation.

Google made open source the Protocol Buffers compiler,
called protoc, and the runtime libraries, which supports
C++, Java and Python. Protoc also can produce ’meta-data’
file that includes the declared schema in the Protocol Buffers
binary format. A runtime library to read serialized data using
the meta-data file is also provided.

C. Using Protocol Buffers in Sawzall

As mentioned above, Sawzall implicitly assumes that all the
data in the storage is serialized in Protocol Buffers format. To
parse the serialized data, the proto files are required. Sawzall
provides proto statement to refer the proto files.

proto "p4stat.proto"

With this statement, data structures that correspond to
the schema in the proto file are declared and implicit data
conversion functions between the structures and byte array are
defined, so that the data structure could be used in the Sawzall
program.

D. Special Variable input
The Sawzall programs will receive data from a special

variable named input; just like AWK scripts get each input
line stored special variable $0.

The input variable is typed as byte array, often storing
serializing some data structure with Protocol Buffers. To use
the value as a structured data, it have to be deserialized.
In Sawzall, data type conversion happens implicitly upon
assignment. In the following code snippet, the incoming data
is deserialized into a data structure typed P4ChangelistStats.

log: P4ChangelistStats = input;

E. Tables and emit
Aggregators appear in Sawzall programs as special language

structures called tables, defined with keyword table. Here
is a sample declaration of table.

submitsthroughweek: table sum[minute: int] of count: int;

Note that sum is a predefined table type that means the table
sums up all the data it gets. The declaration above defines an
array of sum type table of int.

3

TABLE I
SAWZALL TABLES.

Table name Description
collection creates collection of all the emitted data
maximum outputs largest items
sample statistically samples specified number of items
sum sums up all the data
top outputs most frequent items
unique statistically infers number of unique items

1 proto "p4stat.proto"
2 submitsthroughweek: table sum[minute: int] of count: int;
3
4 log: P4ChangelistStats = input;
5
6 t: time = log.time; # microseconds
7 minute: int = minuteof(t) +
8 60*(hourof(t) + 24*(dayofweek(t)-1))
9 emit submitsthroughweek[minute] <- 1;

Fig. 6. An Example of Sawzall Script

To output to tables, emit statements are used. The data
emitted to a table are handled by an aggregator that corre-
sponds to the table type. Table I shows principal tables in
Sawzall.

emit submitsthroughweek[minute] <- 1;

F. An Example of Sawzall script

Code shown in figure 6 is an example of Sawzall script taken
from [14], which analyze web server logs to get histogram of
request frequency for each minute.

In line 1, a proto statement imports a proto file
to define input data type. The line 2 defines an array of
tables of sum type for int values. The line 4 reads data
from variable input and converts it into structure type
P4ChangelistStats, which is defined in the proto file
above, and assigns it to the variable named log. The line 6,7
and 8 pulls out recorded time from the structure and calculate
minutes. In line 9, the emit statement outputs ’one’ to table
corresponds to the calculated minutes. The table is typed as
sum, so it sums up one for each emission. As a result, it counts
up the emission.

IV. IMPLEMENTATION OF SAWZALLCLONE

A. Overview of SawzallClone

The SawzallClone system is composed of following four
components as shown in figure 7;

• Sawzall compiler
• Mapper Library
• Aggregators
• The main component as the entry point
The Sawzall compiler reads Sawzall source code, generates

Java source code, compile it into Java byte code using javac
and create jar for it. The mapper library will be linked with
the compiled code and works as the Hadoop mapper. The
aggregators are implemented as the Hadoop Reducer module.

The main component works as the entry point for Hadoop.
It invokes Sawzall compiler and sets up configurations for the
system.

Hadoop	

Mapper	
 Library	

Aggregators	

Compiled	
 Code	

Mapper	
 Reducer	

Main	

Compiler	

Sawzall	

script	

Fig. 7. Overview of Implementation.

xxx.proto	

protoc	

Schema	
 In	

ProtocolBuffer	

Schema	
 In	

ProtocolBuffer	

In	
 Base64	

Base64	

Schema	
 In	

ProtocolBuffer	

Schema	
 In	

ProtocolBuffer	

In	
 Base64	

	
 	
Base64	
 	
 	

Data	

Encoded	
 in	

ProtocolBuffers	

Intermediate	

Representa=on	

Internal	

Representa=on	

	
 	

Main	
 Mapper Library	

Compiled Code	

Transferred	

in configuration 	

Protoc	

Library	

Fig. 8. Processing of Protocol Buffers message.

B. Including Protocol Buffers Schema

As described in III-C, Sawzall must handle Protocol Buffers
schemata. We leveraged Protocol Buffers implementation from
Google.

Upon compilation of the Sawzall source code, the compiler
finds proto statements and invokes protoc on the specified
file to generate compiled schema definition in Protocol Buffers
format. The definition is encoded with base64 to make it
human readable string and embedded in the Hadoop configura-
tion structure and passed to the SawzallClone mapper library.

The SawzallClone mapper library will extract the encoded
schema and decode it. Using the schema, it reads the byte
array from HDFS and decodes them into intermediate data
structure defined by Protocol Buffers implementation. The data
structure will be converted into SawzallClone native internal
representation.

C. Parser Combinators

We choose the Scala language for implementation, because
of two reasons. One is that, since Scala programs are compiled
into Java byte-codes, it is easy to use it with Hadoop, which
is implemented in Java.

4

WhenStatement =
’when’ ’(’ {QuantifierDecl} BoolExpression ’)’ Statement.
QuantifierDecl = var_name ’:’ quantifier Type ’;’.
quantifier = ’all’ | ’each’ | ’some’.

Fig. 9. when Statement in BNF.

def whenStmt = ("when" ˜> "(" ˜> whenVarDefs ˜
expr ˜< ")" ˜ statement) ˆˆ@ WhenStmt

def whenVarDefs = rep1(whenVarDef)
def whenVarDef = (varNames ˜< ":" ˜ whenMod ˜

dataType ˜< ";") ˆˆ@ WhenDefVar
def whenMod: WhenMod[Parser] = "some" ˆˆˆ@ SomeMod() |

"each" ˆˆˆ@ EachMod() |
"all" ˆˆˆ@ AllMod()

Fig. 10. When implementation with Parser Combinator.

Another reason is the Parser Combinators library that is
included in Scala [11] [6] standard libraries. Parser Combina-
tors is a technique common in functional languages to describe
parsers. Where, parsing functions, which correspond to each
syntax component, are combined by combinator functions
composing parsing function for the whole language. With the
Parser Combinators, parser functions could be described in
similar way with the description in BNF.

While the technique Parser Combinators is not specific for
Scala and could be used in any language with first-order
functions and operator overloading, Scala provides Parser
Combinators as a part of standard libraries comes with the
language.

To demonstrate parser combinator, implementation of when
statement is shown in figure 10. Note that this is a plain Scala
program, not a parser generator source code. When statement
is a Sawzall specific language construct that combines while
loop statement and if condition statements. A BNF based
description is shown in figure 9. Although keywords, such as
WhenStatement and whenStmt, are different, it is obvious
that the Scala description resembles the BNF definition.

D. Compilation

We employed Java as the intermediate code and avoided to
directly compile the Sawzall code into Java byte code. One
of the reasons of the design decision is to simply make the
implementation easy. Another reason is that, since Sawzall
programs are usually not so big, the increased compilation
time is ignorable.

Figure 11 shows a part of the generated code for the word
count code shown in figure 13. The compiled code implements
SCHelpers.Mapper interface, which will be called from
the mapper library of SawzallClone.

V. EVALUATION

We have evaluated SawzallClone from several point of view;
compilation time, comparison with programs with Hadoop
native API, and comparison with szl. Furthermore, we com-
pared parallel execution performance with program written in
Hadoop native API.

A. Evaluation Environment

For the following evaluations, we used 16 nodes PC cluster
each with two sockets of four core Xeon 5580 and 48 GB

memories and SATA HDDs connected with 10Gbit Ethernet.
We used Hadoop version 0.20.

B. Measurement of Compilation time

We have measured time to compile the word count script
shown in figure 13. The whole compilation took 1.2 seconds
including the Java compilation phase that took 0.7 seconds.
Given that typical MapReduce computation lasts more than
tens of minutes, the compilation time is ignorable.

C. Comparison with Hadoop Native Program

Here, we compare SawzallClone with Java program with
Hadoop API. We employed the word counting program for
comparison. Figure 13 and 14 show word counting programs
in Sawzall and Java with Hadoop API, respectively. The
former is in just 6 lines, while the latter is in about 60 lines.
This proves the efficiency of Sawzall in writing scripts.

We compared the execution speed using the programs. As
the input files we generated files with 69,906 lines, with 1
to 100 words in each line. The mapper is invoked on each
line. It means that the loop in the script will iterate number
of the words times for each invocation. The evaluation was
performed with just one worker and reducer, since the goal of
the experiment is to know the overhead of the Protocol Buffers.
Note that the Sawzall version uses Protocol Buffers encoded
file although it does not explicitly appears in the script, while
the Java version uses plain text.

Figure 12 shows the result. The x-axis denotes number of
words in each line and the y-axis denotes the time spent. Each
experiment was performed 5 times and the average time is
plotted in the graph. The error bar in the graph denotes the
standard deviation of the value.

SawzallClone is substantially slower than the Java program.
The overhead could be divided into Sawzall compiled code
overhead and Protocol Buffers overhead. To divide these two,
we modified the Java program so that it also uses Protocol
Buffers. The result is also shown in figure 12. The difference
between Sawzall and Java with Protocol Buffers is quite small,
proving that the overhead mainly comes from Protocol Buffers.

D. Comparison with Szl

We compared SawzallClone with szl, the open source
Sawzall implementation from Google. Since szl does not
support parallel execution so far unfortunately, we compared
them with sequential execution. For comparison, we employed
the sample code appeared in the paper [14], shown in figure
6. We generated log files with 0.5, 1, 1.5, 2, and 2.5 million
records in Protocol Buffers format and run SawzallClone and
szl on them. 1

The result is shown in figure 15. While SawzallClone
is substantially slower than szl, note that the difference is
constant and does not depends on the number of records in
the file. This means that the execution speed of SawzallClone
is comparable with szl and the difference comes from start up
overhead, presumably due to Java VM initialization.

1The protocol buffer support in szl is intentionally turned off. We slightly
modified the code to turn on the support for evaluation.

5

public class Mapper implements SCHelpers.Mapper {
...
@Override
public void map(SCHelpers.Emitter emitter,

Helpers.ByteStringWrapper global_0_input)
throws java.lang.Throwable {
String local_0_document = BuildIn.func_string(global_0_input);
List<String> local_1_words = BuildIn.func_split(local_0_document);
{
Long local_2_i = 0l;
for (; (((((local_2_i) < (BuildIn.func_len(local_1_words)))?1l:0l)) != 0l);

(local_2_i) = (((local_2_i) + (1l)))) {
emitter.emit(statics.static_0_t,

BuildIn.func_bytes((local_1_words).get((local_2_i).intValue())),
BuildIn.func_bytes(1l));

}
}

}
}

Fig. 11. Compiled Code.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

T
im

e
[s

]

No. of words in one line

SawzallClone
Java with ProtocolBuffers

Java

Fig. 12. Wordcount Comparison.

document: string = input;
words: array of string = split(document);

t: table sum[string] of int;

for (i: int = 0;i < len(words);i = i + 1) {
emit t[words[i]] <- 1;

}

Fig. 13. Word Count implementation in Sawzall

E. Evaluation with Parallel Execution

We have performed evaluation of parallel execution speed
using Hadoop. We employed the log analysis program shown
in figure 6. For comparison we wrote Java version of the
program using Hadoop API. Note that we used Protocol
Buffers for both of them.

We used 1 to 16 workers for mappers and reducers. As the
target log files, use set up 64 log files, about 40MB each,
replicated 3 times on HDFS.

The result is shown in figure 16. The x-axis denotes number
of workers and the y-axis denotes elapsed time. Figure 17
shows the SawzallClone execution time normalized by the
execution of the Java version.

The overhead imposed by SawzallClone is less than 10%
for all the number of workers. Given that Sawzall makes
implementation of the scripts easy, this overhead could be said

public class WordCount {
public static class Map
extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one =

new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value,
Context context)

throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());
context.write(word, one);

}
}
}

public static class Reduce
extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key,

Iterator<IntWritable> values,
Context context)

throws IOException, InterruptedException {
int sum = 0;
while (values.hasNext())

sum += values.next().get();
context.write(key, new IntWritable(sum));

}
}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);

job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);
}

}

Fig. 14. Word Count Implementation with Hadoop API.

quite small.

VI. CONCLUSION

We implemented SawzallClone that executes Sawzall scripts
on Hadoop. The system is implemented in Scala to leverage
its Parser Combinator library to make the implementation
easy. We evaluated the system comparing with programs
written using native Hadoop API and confirmed that imposed

6

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 500000 1e+06 1.5e+06 2e+06 2.5e+06

T
im

e
[s

]

No. of Entries

szl
SawzallClone

Fig. 15. Comparison with szl.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10 12 14 16

T
im

e
[s

]

of workers

SawzallClone
Java

Fig. 16. Parallel Execution Comparison with Hadoop.

overhead by the language layer is small enough. We also
compared it with Google’s open source implementation, which
is implemented in C++, and found that execution speed is
comparable.

The followings are the future work:
• Compatibility Improvement SawzallClone has some

compatibility issue with szl, the open source implemen-
tation from Google, including lack of function definition
capability. We will fix the issue.

• Adoption to other MapReduce systems The system
could be implemented on any MapReduce based system.
We are developing a MapReduce system called SSS [12],
based on distributed key-value store, which is designed
to be faster than Hadoop. We will adopt SawzallClone to
the system.

• Improve Aggregator While Sawzall is designed to al-
low optimized aggregator implementations [14], Sawza-
llClone just provide naively implemented ones. We will
optimize the aggregator implementation.

• Improve Language Construct Sawzall focuses on map-
pers only making program easy to understand and write.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 16

N
or

m
al

iz
ed

 E
la

ps
ed

 T
im

e

of workers

Fig. 17. Normalized Execution Time.

While this concept made it unique solution, apparently
there is room to improve. We will extend the language
so that it can also handle reducers, not only mappers.

ACKNOWLEDGEMENT

This work was partly funded by the New Energy and Indus-
trial Technology Development Organization (NEDO) Green-IT
project.

REFERENCES

[1] Hadoop. http://hadoop.apache.org/.
[2] Hive. http://hive.apache.org/.
[3] jaql: Query Language for JavaScript(r) Object Notation. http://code.

google.com/p/jaql/.
[4] Pig. http://pig.apache.org/.
[5] Protocol buffers - google’s data interchange format. http://code.google.

com/p/protobuf/.
[6] Scala. http://scala-lang.org/.
[7] Szl - a compiler and runtime for the sawzall language. http://code.

google.com/p/szl/.
[8] A. V. Aho, Z. W. Kernighan, and P. J. Weinberger. The AWK Program-

ming Language. Addison Wesley, 1988.
[9] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and J. McPher-

son. Ricardo: Integrating R and Hadoop. 2010.
[10] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on

large clusters. In OSDI’04: Sixth Symposium on Operating System
Design and Implementation, 2004.

[11] M. Odersky, L. Spoon, and B. Venners. Programming in Scala, Second
Edition, 2010.

[12] H. Ogawa, H. Nakada, R. Takano, and T. Kudoh. Sss: An implemen-
tation of key-value store based mapreduce framework. In Proceedings
of 2nd IEEE International Conference on Cloud Computing Technology
and Science (Accepted as a paper for First International Workshop on
Theory and Practice of MapReduce (MAPRED’2010)), pages 754–761,
2010.

[13] C. Olston, S. Chopra, and U. Srivastava. Generating example data for
dataflow programs. In SIGMOD 2009, 2009.

[14] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data:
Parallel analysis with sawzall. Scientific Programming Journal, Special
Issue on Grids and Worldwide Computing Programming Models and
Infrastructure, 13(4):227–298, 2005.

[15] I. Sun Microsystems. Xdr: External data representation standard. RFC
1014, June 1987.

[16] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Liu, and R. Murthy. Hive - a petabyte scale data warehouse
using hadoop. In ICDE 2010: 26th IEEE International Conference on
Data Engineering, 2010.

